

 $\mathbf{A}\psi$

4D and Quantum

Vision Group

Overview and Contributions

Multi-matching: finding cycle-consistent point-wise correspondences between several shapes

Previous quantum work [1] successfully matches two shapes. We propose a new method supporting multiple shapes. It outperforms AQC-SotA and is on par with classical SotA.

Contributions

1. CCuantuMM: Quantum-hybrid multi-matching algorithm with cycle consistency, using adiabatic quantum computing (AQC) 2. New policy to match three shapes on AQC

3. Policy for extending the three-shape case to N shapes

$$\begin{array}{c|c} & \textbf{Background} & \textbf{M} \\ \hline \textbf{Quadratic Assignment Problem:} \\ \textit{Input: Shape M and N, each discretized into n vertices} \\ & \min_{x \in \mathbb{P}_n} E(x) = x^T W x & \substack{x = \operatorname{vec}(X) \\ \mathbb{P}_n \subset \{0,1\}^{n^2} \\ W \in \mathbb{R}^{n^2 \times n^2} & \textit{Output: Optimal Optimization} \\ \hline \textbf{Quantum Annealing: A heuristic that provides a solution} \\ & \textbf{Quadratic Unconstrained Binary Optimization (QUBO) problem is } \\ & \min_{x \in \{0,1\}^k} x^T Q x \text{ where } Q \in \mathbb{R}^{k \times k} \\ \end{array}$$

References

I] Seelbach Benkner et al. Q-Match: Iterative shape matching via quantum annealing. In ICCV, 2021. [2] Melzi et al. Spectral upsampling for efficient shape correspondence. In ACM TOG, 2019. [3] Gao et al. Isometric multi-shape matching. In CVPR, 2021.

[4] Bronstein et al. Scale-invariant heat kernel signatures for non-rigid shape recognition. In CVPR, 2010.

Code

CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes

Harshil Bhatia^{1,2} Edith Tretschk² Zorah Lähner³ Marcel Seelbach Benkner³ Michael Moeller³ Christian Theobalt² Vladislav Golyanik² ¹Indian Institute of Technology, Jodhpur²Max Planck Institute for Informatics, SIC³Universität Siegen

$$\boldsymbol{P} \quad P(\alpha) = P + \sum_{i=1}^{k} \alpha_i (c_i - I) P$$

$$(c_i - I)P_{\mathcal{X}\mathcal{Y}}) \cdot (P_{\mathcal{Y}\mathcal{Z}} + \sum_{j=1}^k \beta_j (\tilde{c}_j - I)P_{\mathcal{Y}\mathcal{Z}})$$

$$\sum_{l=1}^{k} \beta_{j} \left(F_{\mathcal{Y}\mathcal{Z}}(P_{\mathcal{Y}\mathcal{Z}}, \tilde{C}_{j}) + F_{\mathcal{X}\mathcal{Z}}(P_{\mathcal{X}\mathcal{Z}}, P_{\mathcal{X}\mathcal{Y}}\tilde{C}_{j}) \right)$$

$$\sum_{l=1}^{k} \beta_{j} \beta_{l} \left(E_{\mathcal{Y}\mathcal{Z}}(\tilde{C}_{j}, \tilde{C}_{l}) + E_{\mathcal{X}\mathcal{Z}}(P_{\mathcal{X}\mathcal{Y}}\tilde{C}_{j}, P_{\mathcal{X}\mathcal{Y}}\tilde{C}_{l}) \right)$$

$$F_{ij}, P_{\mathcal{X}\mathcal{Y}}\tilde{C}_{j}) + F_{\mathcal{X}\mathcal{Z}}(K_{ij}, C_{i}P_{\mathcal{Y}\mathcal{Z}}) + E_{\mathcal{X}\mathcal{Z}}(K_{ij}, K_{ij})$$

	Ours	QMatchV2-cc	QMatchV2-nc	lsoMuSh[3]	ZoomOut[2]	HKS
FAUST	0.989	0.886	0.879	0.974	0.886	0.746
TOSCA	0.967	0.932	0.940	0.952	0.864	0.742
SMAL	0.866	0.771	0.813	0.926	0.851	0.544

- for the first time in the literature
- Iterative optimisation of triplets is highly effective and classical multi-matching methods might benefit as well

Experimental Results

Conclusion

• Our method is comparable to classical methods, which is observed

• Approximating certain higher-order terms still allows for high-quality solutions, which is promising for future quantum methods