

Visual Computing and AI Department

4D and Quantum Vision Group

SIC Lecture Series 01.09.2021

3D Computer Vision: From a Classical to a Quantum Perspective

SIC Lecture Series (01.09.2021)

Vladislav Golyanik

Visual Computing and AI Department

Outline

- Introduction
- Overview of the Research Fields (4DQV Group)
- Adiabatic Quantum Computing
- Quantum Algorithms for Computer Vision and Graphics

Images: NASA/WMAP Science Team/ Art by Dana Berry; NASA/ADLER/U. CHICAGO/WESLEYAN/JPL-CALTECH/TSP/SCHMIDT; Event Horizon Telescope (EHT)

Expansion of the universe

Images: NASA/WMAP Science Team/ Art by Dana Berry; NASA/ADLER/U. CHICAGO/WESLEYAN/JPL-CALTECH/TSP/SCHMIDT; Event Horizon Telescope (EHT)

Expansion of the universe

The Milky Way

The Milky Way

Black Hole M87*

The history of the universe is, in effect, a huge and ongoing quantum computation. The universe is a quantum computer.

Seth Lloyd

Vladislav Golyanik

Motus • Ouanta

4D and Quantum

Vision Group

Images: NASA/WMAP Science Team/ Art by Dana Berry; NASA/ADLER/U. CHICAGO/WESLEYAN/JPL-CALTECH/TSP/SCHMIDT; Event Horizon Telescope (EHT)

 Comunity
 Ladscape

 Population
 Image: Imag

(B) Organisms to ecosystems

1.5 Biosphere: NASA images by Reto Stöckli, based on data from NASA and NOAA.

Tewari *et al.* High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder. TPAMI, 2017. Parot *et al.* Photometric Stereo Endoscopy. Journal of Biomedical Optics, 2013. Golyanik *et al.* Introduction to Coherent Depth Fields for Dense Monocular Surface Recovery. BMVC, 2017.

Sports

HCI (Gesture recognition)

(B) Organisms to ecosystems

1.5 Biosphere: NASA images by Reto Stöckli, based on data from NASA and NOAA.

Tewari *et al.* High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder. TPAMI, 2017. Parot *et al.* Photometric Stereo Endoscopy. Journal of Biomedical Optics, 2013. Golyanik *et al.* Introduction to Coherent Depth Fields for Dense Monocular Surface Recovery. BMVC, 2017.

(B) Organisms to ecosystems

1.5 Biosphere: NASA images by Reto Stöckli, based on data from NASA and NOAA.

Tewari *et al.* High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder. TPAMI, 2017. Parot *et al.* Photometric Stereo Endoscopy. Journal of Biomedical Optics, 2013. Golyanik *et al.* Introduction to Coherent Depth Fields for Dense Monocular Surface Recovery. BMVC, 2017.

Vladislav Golyanik

Sports

HCI (Gesture recognition)

Human face and body parts (e.g., back)

(B) Organisms to ecosystems

1.5 *Biosphere*: NASA images by Reto Stöckli, based on data from NASA and NOAA.

Tewari *et al.* High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder. TPAMI, 2017. Parot *et al.* Photometric Stereo Endoscopy. Journal of Biomedical Optics, 2013. Golyanik *et al.* Introduction to Coherent Depth Fields for Dense Monocular Surface Recovery. BMVC, 2017.

Sports

HCI (Gesture recognition)

Human face and body parts (e.g., back)

Endoscopic videos

Applications of Quantum Computing

Boosters:

- Theoretically obtained results are promising
- Broad interest of scientific community and industry
- Progress in physical hardware realisations
- Investments

Applications:

- Material science
- Drug research
- Cryptography

. . .

Machine learning

+ many others

max planck institut

informatik

https://www.profacgen.com/Quantum-Mechanics-Chemistry-in-Drug-Design.htm https://www.anl.gov/article/solving-materials-problems-with-a-quantum-computer https://www.idquantum-cryptography-explained/ https://www.idquantique.com/quantum-safe-security/products/cerberis-xg-qkd-system/ A close-up view of the IBM Q quantum computer. The processor is in the silver-colored cylinder. Stephen Shankland/CNET Steane and Rieffel. Beyond Bits: The Future of Quantum Information Processing. Computer, 2000.

Overview: 4DQV Group (D6)

4D reconstruction (general non-rigid scenes)

Neural rendering

4D reconstruction (hand and humans)

4D reconstruction and tracking of non-rigid scenes and objects

Point set registration and other matching problems

Quantum algorithms for computer vision and graphics

Event-based approaches in vision and graphics

Point cloud analysis (alignment)

dq dr

 $\bar{d}(a) = \frac{8}{\pi} \int_{0}^{1} r \int_{0}^{a} \frac{q}{a^{2}} |q-r| E\left(\frac{\theta}{2} - \frac{4rq}{(q-r)^{2}}\right) |$

 $\xi^{-}(\mathbf{E}(\mathbf{R},\mathbf{t},s))$

Event-based vision (non-rigid scenes)

Quantum CV

Novel View Rendering Rigidity Score

Neural rendering (implicit 3D)

4D and Quantum $\langle \varphi | \psi$ Vision Group

•

Fast Gravitational Approach (FGA)

4D and Quantum $\langle \mathcal{A} | \psi \rangle$ Vision Group Ali, Kahraman, Stricker, Theobalt, Golyanik. Fast Gravitational Approach for Rigid Point Set Registration With Ordinary Differential Equations. *IEEE Access*, 2021.

Vladislav Golyanik

max planck institut informatik

Alignment of LIDAR Data

Neural Dense NRSfM

Overview of neural dense NRSfM with latent space constraints

Sidhu, Tretschk, Golyanik, Agudo and Theobalt. Neural Dense Non-Rigid Structure from Motion with Latent Space Constraints. *ECCV*, 2020.

Neural Dense NRSfM

Overview of neural dense NRSfM with latent space constraints

Sparsity constraints on the latent space function:

$$\mathbf{E}_{\mathrm{latent}}(\mathbf{z}) = \left\| \mathcal{F}(\mathbf{z}) \right\|_1$$

3D reconstructions of *Kinect t-shirt* and *paper* sequences

optical flow colour scheme

- Dense NRSfM is worth studying because the principles are applicable to many other (more well-posed) problems
- Results of dense NRSfM serve as a "lower bound" for many other problems

Sidhu, Tretschk, Golyanik, Agudo and Theobalt. Neural Dense Non-Rigid Structure from Motion with Latent Space Constraints. *ECCV*, 2020.

GraviCap

Input 2D images

3D reconstructions (human and object)

Input videos and the corresponding 3D reconstructions

Dabral, Shimada, Jain, Theobalt, Golyanik. Gravity-Aware Monocular 3D Human-Object Reconstruction. *ICCV*, 2021.

Dabral, Shimada, Jain, Theobalt, Golyanik. Gravity-Aware Monocular 3D Human-Object Reconstruction. *ICCV*, 2021.

EventHands

Playback speed: 0.5x

Rudnev, Golyanik, Wang, Mueller, Seidel, Elgharib, Theobalt. EventHands: Real-Time Neural 3D Hand Pose Estimation from an Event Stream. *ICCV*, 2021.

Part II: Changing the Perspective

- Introduction
- Overview of the Research Fields (4DQV Group)
- Adiabatic Quantum Computing
- Quantum Algorithms for Computer Vision and Graphics

Circuit-Based vs Adiabatic Model

qubits (all QC types)

4D and Quantum

Motus • Ouanta •

Vision Group

	Circuit-based QC	Adiabatic QC (Quantum Annealers)
type	Universal	Specialised
can solve	All classical and quantum algorithms (for the circuit-based model)	QUBO/Ising problems
number of qubits	up to 27	>5000 (35000 couplers)

13

max planck institut informatik

Greenberger, Horne, Zeilinger. Going Beyong Bell's Theorem. Fundamental Theories of Physics, 1989. https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

Greenberger, Horne, Zeilinger. Going Beyong Bell's Theorem. Fundamental Theories of Physics, 1989. https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

Greenberger, Horne, Zeilinger. Going Beyong Bell's Theorem. Fundamental Theories of Physics, 1989. https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

QC is a form of reversible computing:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \qquad CNOT = CX = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

* acts on a single qubit

* acts on two qubits

- No loss of information
- Unitary matrices preserving vector lengths

4D and Quantum $\langle \varphi | \psi \rangle$ Vision Group

Greenberger, Horne, Zeilinger. Going Beyong Bell's Theorem. Fundamental Theories of Physics, 1989. https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

QC is a form of reversible computing:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad CNOT = CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

' acts on a single qubit
* acts on two qubits

- acts on a single qubit
 - No loss of information ٠
 - Unitary matrices preserving vector lengths ٠

max planck institut

informatik

- Entangled particles *communicate* with each other instantaneously
- No *external* information can passed when entangled particles affect each other

Greenberger, Horne, Zeilinger. Going Beyong Bell's Theorem. Fundamental Theories of Physics, 1989 https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedanken experiment the state of the st

Simulated vs Quantum Annealing

Simulated Thermal Fluctuations

Main Parameter: Temperature

Quantum Fluctuations (physical phenomenon)

Main Parameter: Transverse Magnetic Field

Effects: Tunnelling, Superposition and Entanglement

Transition between Hamiltonians

Initial state:

 $|\psi(t=0)\rangle = \bigotimes_{i=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle\right)$ $H(t) = \left(1 - \frac{t}{\tau}\right)H_I + \frac{t}{\tau}H_P$ Transition (simplified): Final state encoding the $s^{\top}Js + b^{\top}s$ \min problem and the data: $s \in \{-1,1\}^n$ qubit couplings qubit biases binary vector (qubits during optimisation) (interaction weights) (individual weights)

Exemplary J (QUBO, 21 qubits)

Transition between Hamiltonians

16 max planck institut informatik

Initial state:

 $H(t) = \left(1 - \frac{t}{\tau}\right)H_I + \frac{t}{\tau}H_P$

 $|\psi(t=0)\rangle = \bigotimes_{i=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle\right)$

qubit biases (individual weights)

Exemplary J (QUBO, 21 qubits)

Annealing functions (schedules)

Transition between Hamiltonians

Initial state:

Transition (simplified):

Final state encoding the problem and the data:

> binary vector (qubits during optimisation)

(interaction weights) (individual weights)

 $|\psi(t=0)\rangle = \bigotimes_{i=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle\right)$

 $H(t) = \left(1 - \frac{t}{\tau}\right)H_I + \frac{t}{\tau}H_P$

Exemplary J (QUBO, 21 qubits)

[Born and Fock, 1928]: A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.

[Manin, 1980][Feynman, 1982]: A quantum computer is proposed [Kadowaki and Nishimori, 1998]: Quantum annealing [Farhi et al., 2001]: Quantum adiabatic evolution algorithm

4D and Quantum Vision Group

nages: Willsch et al. GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm. ArXiv, 2021 What is Quantum Annealing? https://docs.dwavesys.com/docs/latest/c gs 2.html

Vladislav Golyanik

16

max planck institut

informatik

Adiabatic Quantum Algorithms

Every AQC algorithm includes six steps:

1) **QUBO preparation**

2) Minor embedding

3) Quantum annealing (sampling)

4D and Quantum $\langle oldsymbol{arphi} | \psi
angle$ Vision Group

4) Unembedding5) Bitstring selection6) Solution interpretation

Birdal,^{*} Golyanik^{*}, Theobalt, Guibas. *Quantum Permutation Synchronization.* CVPR, 2021. ^{*} equal contribution S. Zbinden et al. Embedding Algorithms for Quantum Annealers with Chimera and Pegasus Connection Topologies. ISC High Performance 2020.

Vladislav Golyanik

max planck institut

informatik

Adiabatic Quantum Algorithms

Every AQC algorithm includes six steps:

1) **QUBO preparation**

2) Minor embedding

3) Quantum annealing (sampling)

4D and Quantum Vision Group

4) Unembedding

5) Bitstring selection

6) Solution interpretation

Connections

QPU

Birdal,* Golyanik*, Theobalt, Guibas. *Quantum Permutation Synchronization*. CVPR, 2021. * equal contribution S. Zbinden et al. Embedding Algorithms for Quantum Annealers with Chimera and Pegasus Connection Topologies. ISC High Performance 2020.

Adiabatic Quantum Algorithms

Fully connected graph with 36 logical qubits

Minor embedding

Every AQC algorithm includes six steps:

1) **QUBO preparation**

2) Minor embedding

3) Quantum annealing (sampling)

4) Unembedding5) Bitstring selection6) Solution interpretation

4D and Quantum $\langle \mathcal{A} | \psi \rangle$ Vision Group

Birdal,* Golyanik*, Theobalt, Guibas. *Quantum Permutation Synchronization*. CVPR, 2021. * equal contribution S. Zbinden et al. Embedding Algorithms for Quantum Annealers with Chimera and Pegasus Connection Topologies. ISC High Performance 2020.

max planck institut

informatik

3-Satisfiability	3D image tomography	
Bayesian inference in imaging	Binary matrix factorization	
Budget pacing in auctions	Calibrating transmissions	
Capacitated vehicle routing	Chemical structure analysis	
Designing metamaterials	Display advertisement optimization	
Donor-patient matching	Election modeling	
Factoring	Factory vehicle scheduling	
Fault diagnosis	Fault tree analysis	
Financial stress analysis	Flight gate assignment	
IMRT beamlet optimization	Job-shop scheduling	
Linear least squares	List order optimization	
Detecting LHC particle collisions	MIMO processing in radio networks	
Minimizing polynomials	Modeling molecular dynamics	
Model predictive control	Modeling terrorist networks	
Number partitioning	Peptide design	
Phylogenetics	Portfolio optimization	
Satellite scheduling	Simulating KT phase transitions	
Simulating material structures	Simulating atomic magnometers	
Simulating quantum lattice transitions	Stock market forecasting	
Telecommunications network design	Topological data analysis	
Traffic flow optimization	Traffic signal optimization	
Tsunami evacuation routing	Waste collection optimization	
ML: accelerating deep learning	ML: classification in cancer research	
ML: classification in DNA analysis	ML: quantum boosting	
ML: training neural networks	ML: reinforcement learning	
ML: unsupervised learning	-	

4D and Quantum

Motus • Ouanta • Visi

Vision Group

Computer Vision and Graphics

Transformation estimation (2D, 3D) Point set alignment Graph matching Permutation synchronisation Non-rigid shape alignment Motion segmentation

 $\sum_{s\in\{-1,1\}^n} s^{\top}Js + b^{\top}s$

...

Point set registration, CVPR 2020 Graph matching, 3DV 2020

Permutation synchronisation, CVPR 2021

Non-rigid shape alignment, ICCV 2021

Golyanik and Theobalt. A Quantum Computational Approach to Correspondence Problems on Point Sets. *CVPR*, 2020. Seelbach Benkner, Golyanik, Theobalt, Moeller. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. *3DV*, 2020. Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. * equal contribution

Cycle Consistency

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV, 2021.

Point set registration, CVPR 2020

Graph matching, 3DV 2020

Permutation synchronisation, CVPR 2021

Non-rigid shape alignment, ICCV 2021

Golyanik and Theobalt. A Quantum Computational Approach to Correspondence Problems on Point Sets. *CVPR*, 2020. Seelbach Benkner, Golyanik, Theobalt, Moeller. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. *3DV*, 2020. Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. * equal contribution

Cycle Consistency

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV, 2021.

Quantum Permutation Synchronisation

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. *equal contribution

Quantum Permutation Synchronisation

$$\arg\min_{\{\mathbf{X}_i\in\mathcal{P}_n\}}\sum_{(i,j)\in\mathcal{E}}\|\mathbf{P}_{ij}-\mathbf{X}_i\mathbf{X}_j^{\top}\|_{\mathrm{F}}^2 = \arg\min_{\{\mathbf{X}_i\in\mathcal{P}_n\}}\mathbf{x}^{\top}\mathbf{Q}'\mathbf{x},$$

$$\mathbf{Q}' = - \begin{bmatrix} \mathbf{I} \otimes \mathbf{P}_{11} & \mathbf{I} \otimes \mathbf{P}_{12} & \cdots & \mathbf{I} \otimes \mathbf{P}_{1m} \\ \mathbf{I} \otimes \mathbf{P}_{21} & \mathbf{I} \otimes \mathbf{P}_{22} & \cdots & \mathbf{I} \otimes \mathbf{P}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{I} \otimes \mathbf{P}_{m1} & \mathbf{I} \otimes \mathbf{P}_{m2} & \cdots & \mathbf{I} \otimes \mathbf{P}_{mm} \end{bmatrix}$$

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. *equal contribution

Quantum Permutation Synchronisation max planck institut informatik

$$\underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \|\mathbf{P}_{ij} - \mathbf{X}_i \mathbf{X}_j^{\top}\|_{\mathrm{F}}^2 = \underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \mathbf{x}^{\top} \mathbf{Q}' \mathbf{x},$$

$$\mathbf{Q}' = - \begin{bmatrix} \mathbf{I} \otimes \mathbf{P}_{11} & \mathbf{I} \otimes \mathbf{P}_{12} & \cdots & \mathbf{I} \otimes \mathbf{P}_{1m} \\ \mathbf{I} \otimes \mathbf{P}_{21} & \mathbf{I} \otimes \mathbf{P}_{22} & \cdots & \mathbf{I} \otimes \mathbf{P}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{I} \otimes \mathbf{P}_{m1} & \mathbf{I} \otimes \mathbf{P}_{m2} & \cdots & \mathbf{I} \otimes \mathbf{P}_{mm} \end{bmatrix}$$

 $\arg\min \mathbf{x}^{\top}\mathbf{Q}'\mathbf{x}$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \in \mathcal{B}$

is turned into

$$\underset{\mathbf{x}\in\mathcal{B}}{\arg\min} \ \mathbf{x}^{\top}\mathbf{Q}\mathbf{x} + \mathbf{s}^{\top}\mathbf{x},$$

where
$$\mathbf{Q} = \mathbf{Q}' + \lambda \mathbf{A}^{\top} \mathbf{A}$$
 and $\mathbf{s} = -2\lambda \mathbf{A}^{\top} \mathbf{b}$.

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. CVPR, 2021. *equal contribution

Vladislav Golyanik

22

Quantum Permutation Synchronisation

$$\underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \|\mathbf{P}_{ij} - \mathbf{X}_i \mathbf{X}_j^{\top}\|_{\mathrm{F}}^2 = \underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \mathbf{x}^{\top} \mathbf{Q}' \mathbf{x},$$

$$\mathbf{Q}' = - \begin{bmatrix} \mathbf{I} \otimes \mathbf{P}_{11} & \mathbf{I} \otimes \mathbf{P}_{12} & \cdots & \mathbf{I} \otimes \mathbf{P}_{1m} \\ \mathbf{I} \otimes \mathbf{P}_{21} & \mathbf{I} \otimes \mathbf{P}_{22} & \cdots & \mathbf{I} \otimes \mathbf{P}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{I} \otimes \mathbf{P}_{m1} & \mathbf{I} \otimes \mathbf{P}_{m2} & \cdots & \mathbf{I} \otimes \mathbf{P}_{mm} \end{bmatrix}$$

 $\underset{\mathbf{x}\in\mathcal{B}}{\arg\min} \ \mathbf{x}^{\top}\mathbf{Q}'\mathbf{x} \quad s.t. \quad \mathbf{A}\mathbf{x} = \mathbf{b}$

is turned into

$$\underset{\mathbf{x}\in\mathcal{B}}{\arg\min} \ \mathbf{x}^{\top}\mathbf{Q}\mathbf{x} + \mathbf{s}^{\top}\mathbf{x},$$

where
$$\mathbf{Q} = \mathbf{Q}' + \lambda \mathbf{A}^{\top} \mathbf{A}$$
 and $\mathbf{s} = -2\lambda \mathbf{A}^{\top} \mathbf{b}$.

$$\mathcal{P}_n := \{ \mathbf{P} \in \{0, 1\}^{n \times n} : \mathbf{P} \mathbf{1}_n = \mathbf{1}_n , \ \mathbf{1}_n^\top \mathbf{P} = \mathbf{1}_n^\top \}$$

Binary Rows sum to 1 Cols sum to 1

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. *equal contribution

4D and Quantum $\langle \mathbf{A} | \psi \rangle$ Vision Group

max planck institut informatik **Quantum Permutation Synchronisation**

C=0.5, σ =0.2

C=0.5, σ =0.2

$$\underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \|\mathbf{P}_{ij} - \mathbf{X}_i \mathbf{X}_j^{\top}\|_{\mathrm{F}}^2 = \underset{\{\mathbf{X}_i \in \mathcal{P}_n\}}{\operatorname{arg\,min}} \mathbf{x}^{\top} \mathbf{Q}' \mathbf{x},$$

$$\mathbf{Q}' = - \begin{bmatrix} \mathbf{I} \otimes \mathbf{P}_{11} & \mathbf{I} \otimes \mathbf{P}_{12} & \cdots & \mathbf{I} \otimes \mathbf{P}_{1m} \\ \mathbf{I} \otimes \mathbf{P}_{21} & \mathbf{I} \otimes \mathbf{P}_{22} & \cdots & \mathbf{I} \otimes \mathbf{P}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{I} \otimes \mathbf{P}_{m1} & \mathbf{I} \otimes \mathbf{P}_{m2} & \cdots & \mathbf{I} \otimes \mathbf{P}_{mm} \end{bmatrix}$$

C=0.5, σ=0

C=0.5, σ=0

C=1, σ =0.2

C=1. σ =0.2

C=0.75, σ =0.2

C=0.75, *σ*=0.2

 $\arg\min \mathbf{x}^{\top}\mathbf{Q}'\mathbf{x}$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \in \mathcal{B}$

is turned into

$$\underset{\mathbf{x}\in\mathcal{B}}{\arg\min} \ \mathbf{x}^{\top}\mathbf{Q}\mathbf{x} + \mathbf{s}^{\top}\mathbf{x},$$

where
$$\mathbf{Q} = \mathbf{Q}' + \lambda \mathbf{A}^{\top} \mathbf{A}$$
 and $\mathbf{s} = -2\lambda \mathbf{A}^{\top} \mathbf{b}$.

Rows sum to 1 Cols sum to 1 Binary

22

C=1, σ=0

C=1, σ=0

C=0.75, σ=0

C=0.75, σ=0

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. CVPR, 2021. Vladislav Golyanik *equal contribution

Quantum Permutation Synchronisation

	Car	Duck	Motorbike	Winebottle	Average
Exhaustive	$\textbf{0.84} \pm \textbf{0.104}$	$\textbf{0.91} \pm \textbf{0.115}$	$\textbf{0.82} \pm \textbf{0.10}$	$\textbf{0.95} \pm \textbf{0.096}$	$ \textbf{0.88} \pm \textbf{0.104} $
EIG	0.81 ± 0.083	0.86 ± 0.102	0.77 ± 0.059	0.87 ± 0.107	0.83 ± 0.088
ALS	$\textbf{0.84} \pm \textbf{0.095}$	0.90 ± 0.102	0.81 ± 0.078	0.94 ± 0.092	0.87 ± 0.092
LIFT	$\textbf{0.84} \pm \textbf{0.102}$	0.90 ± 0.103	0.81 ± 0.078	0.94 ± 0.092	0.87 ± 0.094
Birkhoff	$\textbf{0.84} \pm \textbf{0.094}$	0.90 ± 0.107	0.81 ± 0.079	0.94 ± 0.093	0.87 ± 0.093
D-Wave(Ours)	$\textbf{0.84} \pm \textbf{0.104}$	0.90 ± 0.104	0.81 ± 0.080	$\textbf{0.93} \pm \textbf{0.095}$	0.87 ± 0.096

Average Errors

Evaluations on the synthetic dataset (4 views and 4 points)

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. *equal contribution

Quantum Permutation Synchronisation

	Car	Duck	Motorbike	Winebottle	Average
Exhaustive	$\textbf{0.84} \pm \textbf{0.104}$	$\textbf{0.91} \pm \textbf{0.115}$	$\textbf{0.82} \pm \textbf{0.10}$	$\textbf{0.95} \pm \textbf{0.096}$	$ \textbf{0.88} \pm \textbf{0.104} $
EIG	0.81 ± 0.083	0.86 ± 0.102	0.77 ± 0.059	0.87 ± 0.107	0.83 ± 0.088
ALS	$\textbf{0.84} \pm \textbf{0.095}$	0.90 ± 0.102	0.81 ± 0.078	0.94 ± 0.092	0.87 ± 0.092
LIFT	$\textbf{0.84} \pm \textbf{0.102}$	0.90 ± 0.103	0.81 ± 0.078	0.94 ± 0.092	0.87 ± 0.094
Birkhoff	$\textbf{0.84} \pm \textbf{0.094}$	0.90 ± 0.107	0.81 ± 0.079	0.94 ± 0.093	0.87 ± 0.093
D-Wave(Ours)	$\textbf{0.84} \pm \textbf{0.104}$	0.90 ± 0.104	0.81 ± 0.080	$\textbf{0.93} \pm \textbf{0.095}$	0.87 ± 0.096

Average Errors

Evaluations on the synthetic dataset (4 views and 4 points)

Bit corrections using multiple measurements of different energies

Birdal,* Golyanik*, Theobalt, Guibas. Quantum Permutation Synchronization. *CVPR*, 2021. *equal contribution

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

$$\begin{split} \min_{X \in \mathbb{P}_n} \ E(X) &:= \mathbf{x}^{\mathrm{T}} W \mathbf{x} \\ \mathbf{x} &= \operatorname{vec}(X) \quad W \in \mathbb{R}^{n^2 \times n^2} \\ \mathbb{P} \ \subset \ \{0, 1\}^{n \times n} \quad \text{(permutation matrix)} \\ \mathbb{P}_n &= \ \{X \in \ \{0, 1\}^{n \times n} \mid \sum_i X_{ij} \ = \ 1, \ \sum_j X_{ij} \ = \ 1 \ \forall i, j\}. \end{split}$$

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

Vladislav Golyanik

max planck institut

informatik

$$\begin{array}{c|cccc}
P \\
\hline
P \\
\hline
M \\
N
\end{array}
\end{array}$$

$$\begin{split} \min_{X \in \mathbb{P}_n} E(X) &:= \mathbf{x}^{\mathrm{T}} W \mathbf{x} \\ \mathbf{x} &= \operatorname{vec}(X) \quad W \in \mathbb{R}^{n^2 \times n^2} \\ \mathbb{P} &\subset \{0, 1\}^{n \times n} \quad \text{(permutation matrix)} \\ \mathbb{P}_n &= \{X \in \{0, 1\}^{n \times n} \mid \sum_i X_{ij} = 1, \ \sum_j X_{ij} = 1 \ \forall i, j\}. \end{split}$$

Disjoint permutations commute:

Any
$$X$$
 can be written as $X = \prod_{i=0}^{N} c_i$,
i.e., a product of 2-cycles
(or, generally, disjoint *k*-cycles).

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

Vladislav Golyanik

24

max planck institut informatik

Given: 3D shapes M and N, both discretised with n vertices.

 $W_{i \cdot n+k, j \cdot n+l} = |d_M^g(i, j) - d_N^g(k, l)|$

Find: optimal P

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

Vladislav Golyanik

25

Given: 3D shapes M and N, both discretised with n vertices.

 $W_{i \cdot n+k, j \cdot n+l} = |d_M^g(i, j) - d_N^g(k, l)|$

Find: optimal P

Want to solve but cannot:

 $\min_{X \in \mathbb{P}_n} E(X) := \mathbf{x}^{\mathsf{T}} W \mathbf{x}$ $W_{i \cdot n + k, j \cdot n + l} = |d_M^g(i, j) - d_N^g(k, l)|$

Instead solve

 $\underset{\{P \in \mathbb{P}_n | \exists \alpha \in \{0,1\}^m: P = \left(\prod_i c_i^{\alpha_i}\right) P_0\}}{\arg \min} E(P)$

 $C = \{c_1, ..., c_m\}$

4D and Quantum $\langle \varphi | \psi \rangle$ Vision Group

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

Given: 3D shapes M and N, both discretised with n vertices.

 $W_{i \cdot n+k, j \cdot n+l} = |d_M^g(i, j) - d_N^g(k, l)|$

Find: optimal P

Vision Group

... leading to Want to solve but cannot: $\min_{\alpha \in \{0,1\}^m} \alpha^\top \tilde{W} \alpha \qquad \tilde{W}_{ij} = \begin{cases} E(C_i, C_j) & \text{not submodular} \\ E(C_i, C_j) & E(C_i, P_0) + E(P_0, C_j) \\ E(C_i, C_i) + E(C_i, P_0) + E(P_0, C_j) & \text{otherwise.} \end{cases}$ $\min_{X \in \mathbb{P}_n} E(X) := \mathbf{x}^{\mathrm{T}} W \mathbf{x}$ $W_{i \cdot n+k, j \cdot n+l} = |d_M^g(i, j) - d_N^g(k, l)|$ **Instead solve** $P(\alpha) = P_0 + \sum_{i=1}^{m} \alpha_i (\underline{c_i - I}) P_0$ C_i $\underset{\{P \in \mathbb{P}_n | \exists \alpha \in \{0,1\}^m: P = \left(\prod_i c_i^{\alpha_i}\right) P_0\}}{\operatorname{arg\,min}} E(P)$ $E(Q,R) = \operatorname{vec}(Q)^T W \operatorname{vec}(R)$ $C = \{c_1, ..., c_m\}$ 4D and Quantum (

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV, 2021.

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

Assume
$$C = \{c_1, ..., c_m\}$$
 is a set of disjoint cycles.
Consider

$$\begin{array}{c} \arg\min \\ \{P \in \mathbb{P}_n | \exists \alpha \in \{0,1\}^m : P = (\prod_i c_i^{\alpha_i}) P_0\} \\ \downarrow \\ \text{binary vector parametrising } P \\ \end{array}$$
initial permutation

$$\begin{array}{c} 1 - \alpha_1 & 0 & \alpha_1 & 0 & 0 \\ \alpha_1 & 1 - \alpha_1 & 0 & 0 \\ 0 & \alpha_1 & 1 - \alpha_1 & 0 & 0 \\ 0 & 0 & 0 & 1 - \alpha_2 & \alpha_2 \\ 0 & 0 & 0 & \alpha_2 & 1 - \alpha_2 \end{array}\right)$$
Parametrisation of all combinations with two binary variables

 $\min_{X \in \mathbb{P}_n} E(X) := \mathbf{x}^{\mathrm{T}} W \mathbf{x}$ **Initial QAP formulation;** W cannot be solved on QPU W

 $\min_{\alpha \in \{0,1\}^m} \alpha^\top \tilde{W} \alpha$

QUBO formulation based on cyclic alpha-expansion; can be solved on QPU initial matrix of costs; large; cannot be precomputed and stored; its entries are computed on demand in each iteration

matrix of QUBO costs; requires known W

 $W_{\mathbf{s}}$ a $k^2 imes k^2$ reduction of W based on k worst matches

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV, 2021.

Initialise P_0 via descriptor-based similarity

repeat until converged

obtain I_M and I_N and choose from them a set of ${\it k}$ random and disjoint 2-cycles

```
construct a submatrix of worst matches \,W_s\,
```

```
repeat until every 2-cycle occurred
```

```
choose a random set of 2-cycles
```

```
calculate \tilde{W} and solve \min_{\alpha \in \{0,1\}^m} \alpha^\top \tilde{W} \alpha on QPU

P_i = \left(\prod_j c_j^{\alpha_j}\right) P_{i-1}
```

apply the obtained permutation to worst matches

M

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. *ICCV*, 2021.

(using 40 and 50 worst vertices)

- [32] Holzschuh et al. Simulated annealing for 3d shape correspondence. 3DV, 2020.
- [49] Melzi et al. Zoomout: Spectral upsampling for efficient shape correspondence. ACM ToG, 2019.
- [57] Ovsjanikov et al. Functional maps: a flexible representation of maps between shapes. ACM ToG, 2012.
- [67] Seelbacneh Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.

4D and Quantum **Vision Group**

Seelbach Benkner, Lähner, Golyanik, Wunderlich, Theobalt, Moeller. Q-Match: Iterative Shape Matching via Quantum Annealing. ICCV, 2021.

Vladislav Golyanik

28

max planck institut

informatik

Conclusions and Open Challenges

- Problem types: matching and synchronisation
- Input data: pairwise permutations, point sets, graphs, meshes
- Competitive results for small problems (if solved as a single QUBO sampling) and real-world problems (an iterative CPU-QPU policy)
- Iterative policies with CPU-QPU tasks are promising
- Runtime of the state preparation (QUBO) is not negligible
- The proposed algorithms will improve with hardware improvements (2000Q *vs* Advantage system1.1)

Vladislav Golyanik

planck institut

nformatik

Conclusions and Open Challenges

- Problem types: matching and synchronisation
- Input data: pairwise permutations, point sets, graphs, meshes
- Competitive results for small problems (if solved as a single QUBO sampling) and real-world problems (an iterative CPU-QPU policy)
- Iterative policies with CPU-QPU tasks are promising
- Runtime of the state preparation (QUBO) is not negligible
- The proposed algorithms will improve with hardware improvements (2000Q *vs* Advantage system1.1)

Multi-shape matching

planck institut

- Many signs that quantum computing technology will continue developing next decades
- We are expecting to see works on quantum computer vision from more and more research groups
- Related research fields: quantum machine learning, circuit-based QC algorithms

4D and Quantum Vision Group

Questions?

lmage of Advantage sys. 1.1 (qubit and QPU); D-Wave Systems https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

Thank You!

