

4D and Quantum Vision Group

NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory

Navami Kairanda, Marc Habermann, Christian Theobalt, Vladislav Golyanik

4dqv.mpi-inf.mpg.de/NeuralClothSim (inc. source code)

TL;DR

Can cloth simulation benefit from neural fields?

Existing simulators operate on discrete surface representations (e.g., meshes). We propose a continuous neural representation and a simulation solver.

NeuralClothSim:

- *encodes deformations as a neural deformation field (NDF)
- *supervises NDF equilibria relying on non-linear Kirchhoff-Love theory
- *uses a non-linear anisotropic material model
- *allows material interpolation and simulation editing

NDFs:

- *are adaptive: allocate the capacity to the deformation details
- *are consistent: allow surface state queries at arbitrary spatial resolutions without retraining

Why NeuralClothSim?

Prior works

- Use discrete surface representation
- Generate inconsistent simulation w.r.t. discretisation
- Are non-adaptive

Our solution: Continuous and Consistent:

Cloth simulation

Background: Thin Shell Theory

We model cloths as Kirchhoff-Love thin shells, i.e., a volume with reduced kinematic parameterisation as a midsurface and a director

Validation: Belytschko Obstacle Course We generate accurate deformations on the benchmark obstacle course (c) Pinched cylinder (d) Pinched cylinder (a) Square plate (b) Scordelis-Lo roof (free ends)

Simulation Results

Comparisons to Mesh-based Simulators

NeuralClothSim generates consistent simulation (e.g., folds and wrinkles) at different initial discretisations (left) and at multiple resolutions (right)

References

Belytschko (1985). "Stress projection for membrane and shear locking in shell finite elements". In: Computer Methods in Applied Mechanics and Engineering.

Liang al. (2019). "Differentiable cloth simulation for inverse problems." In: Advances in Neural Information Processing Systems (NeurIPS).

Clyde (2017). "Modeling and data-driven parameter estimation for woven fabrics." In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2017.