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TL;DR Method: NeuralClothSim Simulation Results

We generate a simulation state at equilibria given a cloth geometry in a reference
state, its material properties and external forces

Can cloth simulation benefit from neural fields?

Existing simulators operate on discrete surface representations (e.g., meshes).

We propose a continuous neural representation and a simulation solver. Input S Output
i Simulated State
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NeuralClothSim: State X(§)

“encodes deformations as a neural deformation field (NDF) . NeuralClothSim -
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We model Dirichlet and periodic boundary
conditions as hard constraints
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Our solution: Continuous and Consistent:
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oo NeuralClothSim can incorporate material priors (left), and allows fast editing of
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We generate accurate deformations on the benchmark obstacle course D »
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