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Introduction

Generic shape matching can be formulated as QAP:

min F(X) := x ' Wx
XeP,,

x = vec(X)
P c {0,1}"™*"™ (permutation matrix)
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Introduction :

Generic shape matching can be formulated as QAP:

_ T * The solution space is exponential in n
111111 E(X) =x Wx * NP-hard problem; finding global optima for
XEPn large i ' feasi
ge inputs is unfeasible
x = vec(X) * Allows quadratic costs for matching point pairs,

regards point neighbourhoods
P C {O, 1}n><n (permutation matrix) Existing methods either do not guarantee
2. o globally-optimal solutions or have
W eR"*" prohibitive runtime complexity

max planck institut
‘mati



Introduction :

Generic shape matching can be formulated as QAP:

* The solution space is exponential in n

min F(X) := x ' Wx

e * NP-hard problem; finding global optima for
Chn large inputs is unfeasible
X = vec(X) * Allows quadratic costs for matching point pairs,

» , . regards point neighbourhoods
P c {0,1}"*" (permutation matrix)  * Existing methods either do not guarantee

2.2 globally-optimal solutions or have
6 ]Rn Xn h.b. . . .
4 prohibitive runtime complexity

Our approach:

* Use a QPU to solve QAP without relaxations, while providing theoretical global
optimality guarantees. It can be advantageous compared to, e.g., simulated annealing.



Contributions

* Cyclic alpha-expansions suitable for modern AQC
* Q-Match: heterogeneous iterative method for QAP (including shape matching)
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Contributions

* Cyclic alpha-expansions suitable for modern AQC
* Q-Match: heterogeneous iterative method for QAP (including shape matching)

Experimental results:

* Q-Match can solve real-world problems (n = 500)

* It outperforms quantum SotA and a classical method (functional maps)
* Q-Match is evaluated on D-Wave Advantage system 1.1 (5436 qubits)

* The experiments are reported for ~25 minutes of QPU time

SotA:
*n =7 (permutation synchronisation), n = 4 (graph matching)
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Adiabatic Quantum Computing

HOW A QUANTUM COMPUTER WORKS

Principle of superposition allows parallelism in the calculations

Classical Bit tum bit “qubit”

em Arbil y manip janty

SUPERPOSITION

One qubit:
¢) = al0) +8[1) @B eEC o + |87 =1

Two qubits:
|v) € He H

Images: https://www.volkswagenag.com/en/news/stories/2019/11/where-is-the-electron-and-how-many-of-them.html
Image of Advantage sys. 1.1 (qubit and QPU); D-Wave Systems



Adiabatic Quantum Computing

HOW A QUANTUM COMPUTER WORKS

Principle of superposition allows parallelism in the calculations

3]] flux qubit

Classical Bit quantum bit “qubit”

Bina n Arbitrarily manipulabl quantum system
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MEASURING
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HOW A QUANTUM COMPUTER WORKS

Principle of superposition allows parallelism in the calculations

3]] flux qubit
Classical Bit quantum bit “qubit”

Bin anipulab quantum system

SUPERPOSITION

One qubit:
¢) = al0) +8[1) @B eC  |af + |8 =1

Online Advantage_system1.1 Stats

Two qubits:
W) € Ho H ©) : 0 L

Online 1-10 ... 5436 15.8:0.5
Qc STATUS EST. WAIT TIME QuBITS QUBIT TEMP (mK)
Images: https://www.volkswagenag.com/en/news/stories/2019/11/where-is-the-electron-and-how-many-of-them.html
Image of Advantage sys. 1.1 (qubit and QPU); D-Wave Systems



Adiabatic Quantum Computing

t t
H(t)=(1-=)H;+-Hp
T T

l ' I I I Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001.

m?x Plﬂtl,‘l’;k institut Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Adiabatic Quantum Computing

t t
H(t) = (1 — —) Hr + ; Hp Transition between initial and problem Hamiltonians

T

Initial state: Solvable optimisation problem:

- 1
: T T
pt=0) =@ (0 +)) | min sTIs+bls
seq—1,1;"
1=1 2

l ' I I I Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001.

max Plﬂﬂ,‘l’;k institut Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Adiabatic Quantum Computing

t
H(t) (1 — —) Hr+—-—Hp Transition between initial and problem Hamiltonians
T T
Initial state: Solvable optimisation problem:
® (10Y + [1)) min  s'Js+0b's
se{—1,1}"

Every AQC algorithm includes six steps:

1) QUBO preparation

2) Minor embedding

3) Quantum annealing (sampling)
4) Unembedding

5) Bitstring selection

6) Solution interpretation

l ' I I I Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001.

m?x Plﬂtl,‘l’;k institut Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Adiabatic Quantum Computing

t t
H(t) = (1 — ;) Hr + ; Hp Transition between initial and problem Hamiltonians

Initial state: Solvable optimisation problem:

n 1 | . _
[Y(t=0)) = @ 7 (10) + |1)) SE{H—lllr,ll}” s Js+b's

Formulation

Every AQC algorithm includes six steps:
1) QUBO preparation
2) Minor embedding
3) Quantum annealing (sampling)
4) Unembedding
5) Bitstring selection
6) Solution interpretation

l l I I I Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001.

max planck institut Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Quantum Computer Vision Methods

Algorithm Problem Processor | # qubits | total QPU time
QUBO Suppression [70] | non-maximum suppression in human tracking 2X 1000 n/a
QA [45, 40] transformation estimation and point set alignment | 2000Q 2048 60 sec.”
QGM [&9] graph matching (two graphs, up to four points) 2000Q 2048 2 — 2.5 min.
QuantumSync (ours) permutation synchronization (multiple views, | Adv. 1.1 | 5436 > 15 min.
multiple points)

Table 4. Overview of several recent quantum computer vision methods published at computer vision conferences and our QuantumSync.
Note that the right-most column reports the overall experimental QPU runtime in the evaluation of the methods.
tested on D-Wave 2000Q; the results are reported in the supplementary document |
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ek,

: QA has been recently

[70] Li and Ghosh. Quantum-soft QUBO Suppression for Accurate Object Detection. ECCV, 2020.
Table: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.



Quantum Computer Vision Methods

Algorithm Problem Processor | # qubits | total QPU time
QUBO Suppression [70] | non-maximum suppression in human tracking 2X 1000 n/a
QA [45, 40] transformation estimation and point set alignment | 2000Q 2048 60 sec.”
QGM [&9] graph matching (two graphs, up to four points) 2000Q 2048 2 — 2.5 min.
QuantumSync (ours) permutation synchronization (multiple views, | Adv. 1.1 | 5436 > 15 min.
multiple points)

Table 4. Overview of several recent quantum computer vision methods published at computer vision conferences and our QuantumSync.
Note that the right-most column reports the overall experimental QPU runtime in the evaluation of the methods. “*”’: QA has been recently
tested on D-Wave 2000Q; the results are reported in the supplementary document [46].

Q-Match QAP, Shape Matching Adv. 1.1 5436 ~25 min.

[70] Li and Ghosh. Quantum-soft QUBO Suppression for Accurate Object Detection. ECCV, 2020.
A f i Table: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
y y
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Quantum Graph Matching

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.
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Quantum Graph Matching

301

25 41

20 1

Number of Occurrences
o

-750 -700 -650 -600
Returned Energy

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.



Permutation-ness as Linear Equality Constraints

Proposition 2. The constrained minimization:

argmin x' Q'x st Ax=Db
xeB

can be turned into an (unconstrained) QUBO

arg min x' Qx +s'x,
xeB

where Q = Q'+ MA T A ands = —2\A " b.

[Te1!
A = [1T®I]

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.
Al (N | [2] Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Permutation-ness as Linear Equality Constraints

Proposition 2. The constrained minimization: arg min xIWx +clx
argmin x Q'x sz Ax=b {xe{0,1}"%|  Ax=b}
xel = argmin  x Wx + c'x + \||4Ax — b|[?
can be turned into an (unconstrained) QUBQO x€{0,1}n?
argmin x' Qx +s ' x,
xeB
where Q = Q'+ AATA ands = —2)\ATb. Example:
1 1 0 0 1
0 0 1 1 1
Ai:[I;@l] 1 01 0] 1
1" el 01 0 1 1

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.
Al (N | [2] Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021.
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Alpha Expansion "

+ an efficient algorithm to minimise E(f) = Fsnooth(f) +  Faata(f)-

- involves pairs of pixelsonly  FE;...(f) = Z D,(fy)

- discontinuity preserving pEP

+ goal: find labelling which is piecewise smooth and consistent with the data

+ for label alpha, the algorithm assigns an arbitrary number of pixels to alpha

+ generates a labelling so that there are no expansion moves decreasing the energy
+ the solution is within a known factor of the global minimum

101 p il Boykov et al. Fast Approximate Energy Minimization via Graph Cuts. TPAMI, 2001.
m ck i itut
form.



Alpha Expansion

Diamond image (input) Our method (Eg) Annealmg (E1) Our method (E1)
| Fj
i & '
L}
| .

Tree image Normalized correlation Annealmg (El) Our method (F)

nnn_alpha .
Rock image Normalized correlation Annealing (F3) Our method (Fj)
i1 i Boykov et al. Fast Approximate Energy Minimization via Graph Cuts. TPAMI, 2001.
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Cyclic Permutations

Permutations:

informatik
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Cyclic Permutations

Permutations:

k-cycles:
1 > 4 » 6 2
/ <« 3 <4 3§ 5

six-cycle fixed points
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Cyclic Permutations

Permutations:

k-cycles: Disjoint permutations commute:
1 —» 4 —» 6 2 1T —» 2 6
! . A
/ <« 3 <4 ' § 5 3 «— 4 7
six-cycle fixed points four-cycle  fixed point two-cycle

Any X can be writtenas X = Hi\io c; ,i.e., aproduct of 2-cycles
)i (or, generally, disjoint k-cycles).

max planck institut
informatik



Q-Match

max planck institut
informatik



The Proposed Method

Given: 3D shapes V] and /V ,

both discretised with Tl vertices.
Wi-n—l—k,j-n—l—l — ‘d?w(z)j) — d?\f(kﬁlﬂ

+ Geometric meaning of d9(a, b) influences
the structure of QAP

Find: optimal P

:: Q-Match

16



Q-Match :: The Main Idea !

Want to solve but cannot:

)I(Iéi%l E(X):= x Wx Wi-n—l—k},j-n—l—l — ‘d?\l(znj) o d?\f(kr l)‘

I max planck institut
informatik



Q-Match :: The Main Idea !

Want to solve but cannot:

)I(Iéi%l E(X):= x Wx Wi-n—l—k},j-n—l—l — ‘d?\l(znj) o d?\f(kr l)‘

Instead solve

arg min E(P)

{PeP, |3ac{0,1}m: P=(T], ¢ )Py} (cyclic alpha-expansion)
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Q-Match :: The Main Idea !

Want to solve but cannot:

)I(Iéi%l B(X) :=x"Wx Wik jmer = |d3,(i,5) — d% (k, 1)
Instead solve

arg min E(P . .

{PePn|3ae{o,1}gm: P=(TT, ¢ ) Po} (P) (cyclic alpha-expansion)

... leading to

ot o ) B G) if i # 7,
min o Wao Wij = .
ac{0.1}m E(C;, Ci) + E(Ci, Pv) + E(Py,Cj) otherwise.
E(Q,R) = vec(Q)T Wvec(R) P(a) = Py + Z a;(c; — I Py
i=1

Ci



Q-Match :: The Main Idea !

Want to solve but cannot:

)I(Iéi%l B(X) :=x"Wx Wik jmer = |d3,(i,5) — d% (k, 1)
Instead solve

arg min E(P . .

{PePn|3ae{o,1}gm: P=(TT, ¢ ) Po} (P) (cyclic alpha-expansion)

... leading to

ot o ) B G) if i # 7,
min o Wao Wij = .
ac{0.1}m E(C;, Ci) + E(Ci, Pv) + E(Py,Cj) otherwise.
E(Q,R) = vec(Q)T Wvec(R) P(a) = Py + Z a;(c; — I Py
i=1

Ci



Cyclic Alpha-Expansion

Assume (' = {01; ees Cm} is a set of disjoint cycles.

informatik
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Cyclic Alpha-Expansion

Assume (' = {(ler ees Cm} is a set of disjoint cycles.

Consider arg min

{PEP,, |Fa€{0,1F7:

|

P=(TI,

binary vector parametrising [~

informatik

(@]

C.
1 1

')

Po

E(P)
)

N

initial permutation
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Cyclic Alpha-Expansion

Assume (' = {01; ees Cm} is a set of disjoint cycles.

Consider
{PeP, |

binary vector parametrising [~

arg min
acq0,1™:

P=(TI,

E(P)
)

N

initial permutation

+ This optimisation problem decides for each cycle whether it is applied or not.
+ Its complexity depends on the number of cycles and not n.



Q-Match :: The Main Idea i

. ; 1-« 1 0 a1 0 0
Given tw.o cycles Cy ) C 2 We o lea; 0 0 0
parametrize all combinations 0 oo l-ag O 0

0 0 0 1—052 a2
0 0 0 as 1-ao

Possible permutations for all choices of a1, as:

with two binary variables a1, oo




Q-Match :: The Main Idea ?

: T
min F(X):=x Wx [/[/
XeP, ( )
initial matrix of costs; large; cannot be precomputed and

Initial QAP formulation; cannot be solved on QPU stored; its entries are computed on demand in each iteration
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Q-Match :: The Main Idea ?

in B(X):=x' W
Inin (X) =x Wx

initial matrix of costs; large; cannot be precomputed and

Initial QAP formulation; cannot be solved on QPU stored; its entries are computed on demand in each iteration

P

: T
min o Wa Mf
ac{0,1}m™m
QUBO formulation based on cyclic alpha-expansion; matrix of QUBO costs; requires known W

can be solved on QPU
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Q-Match :: The Main Idea ?

in B(X):=x' W
Inin (X) =x Wx

initial matrix of costs; large; cannot be precomputed and

Initial QAP formulation; cannot be solved on QPU stored; its entries are computed on demand in each iteration

P

: T
min o Wa Mf
ac{0,1}m™m
QUBO formulation based on cyclic alpha-expansion; matrix of QUBO costs; requires known W

can be solved on QPU

Wi

a k2 x k2 reduction of [/[/ based on k worst matches



Q-Match i

Initialise P() via descriptor-based similarity

repeat until converged

obtain {5/ and In and choose from them a set of k random and disjoint 2-cycles

construct a submatrix of worst matches W




Q-Match i

Initialise PO via descriptor-based similarity
repeat until converged
obtain 37 and /N and choose from them a set of k random and disjoint 2-cycles

construct a submatrix of worst matches W

repeat until every 2-cycle occurred

choose a random set of 2-cycles

i~

calculate W5 and solve min o' Wa on QPU

ae{0,1}™
P =(I1,¢7) P

apply the obtained permutation to worst matches




Q-Match i

Initialise PO via descriptor-based similarity

repeat until converged

obtain 37 and /N and choose from them a set of k random and disjoint 2-cycles

construct a submatrix of worst matches W

repeat until every 2-cycle occurred NP-hard; decides
to apply ¢; or not

choose a random set of 2-cycles

o~

calculate W and solve min o' Wa on QPU
ac{0,1}™

P =(I1,¢7) P

apply the obtained permutation to worst matches




Q-Match :: Choosing Cycles ;

* Observation: entries of QAP are highly correlated (isometric shape matching)
— target explicitly points with high energy scores
—> the test is based on detection of point mapping inconsistencies

Lemma 4.1. Every permutation P can be written as P =

We ch 2-cycles:
€ choose s-cycies Q R, where () and R are products of disjoint 2-cycles.

I max planck institut
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Q-Match :: Choosing Cycles ;

* Observation: entries of QAP are highly correlated (isometric shape matching)
— target explicitly points with high energy scores
—> the test is based on detection of point mapping inconsistencies

Q-p,..
Lemma 4.1. Every permutation P c’c’zﬁ'&ktvﬂ&l;{en as P =

We ch 2-cycles:
€ choose 2-cycies Q R, where () and R are products of disjoint 2-cy

'pl'()of
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Experimental Results

= 1 % 100 .10°
= RRRENE " 10
& 08 __x X * % Q-Match S 30 1.5 s WOTSt 26 ||
g 0.6 X x x QGM [67] —“.E 60 ~ Worst 40
Y - =t y - !
@) ‘ X e - ~ 1 I
04 Xx¢ g IV | B Worst 50
T x x X 040 >
E - --- SAB0] || Zos|
0 0.2 o 20 e Q-Match || m
S 0 wwwxms S ooL— Qhmmmmamaaos
6 8101214161820 05.10-20.1 0.15 0.2 10 20
# Instance Geodesic error # Iteration
Success rates on 20 Cumulative error (left) and
random problems. convergence (right) on FAUST.

[30] Holzschuh et al. Simulated annealing for 3d shape correspondence. 3DV, 2020.
53] Ovsjanikov et al. Functional maps: a flexible representation of maps between shapes. ,2012.
11 il [53] Ovsjanik . Functional maps: a flexible rep ion of maps b hapes. SIGGRAPH
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Experimental Results

Q-Match QGM

L 9

QGM: Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020.



Experimental Results

na1

Example correspondences from the FAUST registrations.
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Experimental Results

I

m— (QPU access

-}

= CoOuplings

N )]
o O
|

e —T]

15 20 25
# worst vertices

Runtime (in ms)

-}

—
-]

Runtime (in s)

_ =
o Ot

o Ot

—~

Calc. W

—
-

15 20 25
# worst vertices

Influence of the problem size on the runtime.
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109
101
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103

Experimental Results

® 500 Anneals ¢ 500 Anneals
5000 Anneals ¢ 5000 Anneals

.f 1 06664 i ‘
g oy
= = 0.6 -

. !
g - S 0.4 1
- a®
i T 0.2
= | 0 |
0 20 40 0 20 40

Number worst vertices

Number worst vertices

Success probability (left) and the fraction of executions
where the best solution is the optimum (right).
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Experimental Results

Minor embeddings for the variants with 8, 16, 24, 32 worst vertices, respectively.
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Experimental Results

Minor embeddings for the variants with 40 and 50 worst vertices, respectively.




Experimental Results

=

=

3 4 ,,2 100 logical

Eﬁ 5l oo ° % {0 | = physical

o 0e®® 3 60
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= 1 ee %

-~ s 20 —

2 0 | | % 0 I
o0 0 10 20 30 40 50 0 10 20 30 40 50
< # worst vertices # worst vertices
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Conclusions and Next Steps

* Q-Match can solve QAP of sizes encountered in practical applications

— claimed for the first time for a quantum method (CV/CG literature)
* No explicit permutation constraints and the iterative approach allow us to
outperform previous quantum SotA

—> both in terms of problem sizes and success probabilities
* Q-Match outperforms a classical method

I max planck institut
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Conclusions and Next Steps

* Q-Match can solve QAP of sizes encountered in practical applications

— claimed for the first time for a quantum method (CV/CG literature)
* No explicit permutation constraints and the iterative approach allow us to
outperform previous quantum SotA

—> both in terms of problem sizes and success probabilities

* Q-Match outperforms a classical method
Next steps: W !

— Apply the same principles to multi-shape matching % t

[ ZE

max planck institut Image: Gao et al. Isometric Multi-Shape Matching. CVPR, 2021.
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