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Overview

1) Introduction 2) Preliminaries 

3) Q-Match 4) Experimental Results 

Motivation and Contributions

* Adiabatic quantum computing
* Related work (quantum CV)
* Alpha-Expansion
* Cyclic permutations

* Overview
* Cyclic alpha-expansion
* Algorithm 
* Choosing cycles

* Quantitative results
* Problem sizes and runtime
* Success probabilities
* Minor embeddings 
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Generic shape matching can be formulated as QAP: 

* The solution space is exponential in n
* NP-hard problem; finding global optima for     
   large inputs is unfeasible
* Allows quadratic costs for matching point pairs,
   regards point neighbourhoods  
* Existing methods either do not guarantee        
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Introduction

Generic shape matching can be formulated as QAP: 

Our approach: 

* Use a QPU to solve QAP without relaxations, while providing theoretical global  
optimality guarantees. It can be advantageous compared to, e.g., simulated annealing. 
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* The solution space is exponential in n
* NP-hard problem; finding global optima for     
   large inputs is unfeasible
* Allows quadratic costs for matching point pairs,
   regards point neighbourhoods  
* Existing methods either do not guarantee        
   globally-optimal solutions or have                  
   prohibitive runtime complexity
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Contributions

* Cyclic alpha-expansions suitable for modern AQC
* Q-Match: heterogeneous iterative method for QAP (including shape matching)
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Contributions

* Cyclic alpha-expansions suitable for modern AQC
* Q-Match: heterogeneous iterative method for QAP (including shape matching)

Experimental results: 
* Q-Match can solve real-world problems (n = 500)
* It outperforms quantum SotA and a classical method (functional maps) 
* Q-Match is evaluated on D-Wave Advantage system 1.1 (5436 qubits)
* The experiments are reported for ~25 minutes of QPU time 

SotA: 
* n = 7 (permutation synchronisation), n = 4 (graph matching) 
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Adiabatic Quantum Computing

Images: https://www.volkswagenag.com/en/news/stories/2019/11/where-is-the-electron-and-how-many-of-them.html    
Image of Advantage sys. 1.1 (qubit and QPU); D-Wave Systems 
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One qubit:

Two qubits:



  

Adiabatic Quantum Computing
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Adiabatic Quantum Computing

Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001. 

Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
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Adiabatic Quantum Computing

Transition between initial and problem Hamiltonians

Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001. 

Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
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Initial state: Solvable optimisation problem: 



  

Adiabatic Quantum Computing

Transition between initial and problem Hamiltonians

Every AQC algorithm includes six steps: 
1) QUBO preparation
2) Minor embedding
3) Quantum annealing (sampling)
4) Unembedding
5) Bitstring selection
6) Solution interpretation 

Farhi et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001. 

Image: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
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Quantum Computer Vision Methods 9

Table: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
[70] Li and Ghosh. Quantum-soft QUBO Suppression for Accurate Object Detection. ECCV, 2020. 



  

Quantum Computer Vision Methods

Table: Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
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Q-Match QAP, Shape Matching Adv. 1.1 5436 ~25 min.

[70] Li and Ghosh. Quantum-soft QUBO Suppression for Accurate Object Detection. ECCV, 2020. 



  

Quantum Graph Matching

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020. 
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Quantum Graph Matching

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020. 
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Permutation-ness as Linear Equality Constraints

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020. 
[2] Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 
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Permutation-ness as Linear Equality Constraints

[1] Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020. 
[2] Birdal and Golyanik et al. Quantum Permutation Synchronization. CVPR, 2021. 

Example: 
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Alpha Expansion

Boykov et al. Fast Approximate Energy Minimization via Graph Cuts. TPAMI, 2001. 

+ an efficient algorithm to minimise

- involves pairs of pixels only
- discontinuity preserving

+ goal: find labelling which is piecewise smooth and consistent with the data
+ for label alpha, the algorithm assigns an arbitrary number of pixels to alpha
+ generates a labelling so that there are no expansion moves decreasing the energy
+ the solution is within a known factor of the global minimum
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Alpha Expansion

Boykov et al. Fast Approximate Energy Minimization via Graph Cuts. TPAMI, 2001. 
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Cyclic Permutations

Permutations: 
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Cyclic Permutations

Permutations: 

k-cycles:  

1 4 6

7 3 8

2

5

fixed points six-cycle
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Cyclic Permutations

Permutations: 

k-cycles:  

1 4 6

7 3 8

2

5

fixed points six-cycle

Disjoint permutations commute:  

1 2

3 4

6

7

5

four-cycle fixed point two-cycle

Any  can be written as  , i.e., a product of 2-cycles 
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(or, generally, disjoint k-cycles). 



  

Q-Match



  

The Proposed Method :: Q-Match

Given: 3D shapes         and        , 

     both discretised with       vertices.

 + Geometric meaning of                  influences 
    the structure of QAP

Find: optimal 
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Q-Match :: The Main Idea
Want to solve but cannot: 
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Q-Match :: The Main Idea

Instead solve 

Want to solve but cannot: 

(cyclic alpha-expansion)
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Q-Match :: The Main Idea

Instead solve 

Want to solve but cannot: 

… leading to 

(cyclic alpha-expansion)
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not submodular



  

Cyclic Alpha-Expansion

Assume is a set of disjoint cycles.
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Cyclic Alpha-Expansion

Assume is a set of disjoint cycles.

Consider

initial permutationbinary vector parametrising 
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Cyclic Alpha-Expansion

Assume is a set of disjoint cycles.

Consider

initial permutationbinary vector parametrising 

+ This optimisation problem decides for each cycle whether it is applied or not. 
+ Its complexity depends on the number of cycles and not n. 
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Q-Match :: The Main Idea 19



  

Q-Match :: The Main Idea

initial matrix of costs; large; cannot be precomputed and 
stored; its entries are computed on demand in each iteration Initial QAP formulation; cannot be solved on QPU
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Q-Match :: The Main Idea

initial matrix of costs; large; cannot be precomputed and 
stored; its entries are computed on demand in each iteration 

matrix of QUBO costs; requires known        

Initial QAP formulation; cannot be solved on QPU

QUBO formulation based on cyclic alpha-expansion; 
can be solved on QPU
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Q-Match :: The Main Idea

initial matrix of costs; large; cannot be precomputed and 
stored; its entries are computed on demand in each iteration 

matrix of QUBO costs; requires known        

Initial QAP formulation; cannot be solved on QPU

QUBO formulation based on cyclic alpha-expansion; 
can be solved on QPU

a                  reduction of           based on k worst matches
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Q-Match

repeat until converged

obtain        and        and choose from them a set of k random and disjoint 2-cycles 

construct a submatrix of worst matches

Initialise        via descriptor-based similarity
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Q-Match

repeat until converged

obtain        and        and choose from them a set of k random and disjoint 2-cycles 

construct a submatrix of worst matches

repeat until every 2-cycle occurred 

choose a random set of 2-cycles 

Initialise        via descriptor-based similarity

calculate         and solve                             on QPU

apply the obtained permutation to worst matches
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Q-Match

repeat until converged

obtain        and        and choose from them a set of k random and disjoint 2-cycles 

construct a submatrix of worst matches

repeat until every 2-cycle occurred 

choose a random set of 2-cycles 

Initialise        via descriptor-based similarity

calculate         and solve                             on QPU

apply the obtained permutation to worst matches

NP-hard; decides 
to apply       or not

21



  

Q-Match :: Choosing Cycles

We choose 2-cycles:  

* Observation: entries of QAP are highly correlated (isometric shape matching) 
→ target explicitly points with high energy scores 
→ the test is based on detection of point mapping inconsistencies  
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→ the test is based on detection of point mapping inconsistencies  
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see pre-print for the proof
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Experimental Results

Success rates on 20 
random problems. 

Cumulative error (left) and 
convergence (right) on FAUST. 

[30] Holzschuh et al. Simulated annealing for 3d shape correspondence. 3DV, 2020.                                      
[53] Ovsjanikov et al. Functional maps: a flexible representation of maps between shapes. SIGGRAPH, 2012. 
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Experimental Results

QGM: Seelbach Benkner et al. Adiabatic Quantum Graph Matching with Permutation Matrix Constraints. 3DV, 2020. 
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Experimental Results

Example correspondences from the FAUST registrations. 
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Experimental Results

Influence of the problem size on the runtime.
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Experimental Results

Success probability (left) and the fraction of executions 
where the best solution is the optimum (right). 
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Experimental Results

Minor embeddings for the variants with 8, 16, 24, 32 worst vertices, respectively. 
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Experimental Results

Minor embeddings for the variants with 40 and 50 worst vertices, respectively. 
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Experimental Results 31



  

Conclusions and Next Steps

* Q-Match can solve QAP of sizes encountered in practical applications
→ claimed for the first time for a quantum method (CV/CG literature) 

* No explicit permutation constraints and the iterative approach allow us to 
outperform previous quantum SotA

→ both in terms of problem sizes and success probabilities 
* Q-Match outperforms a classical method 
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Conclusions and Next Steps 32

Image: Gao et al. Isometric Multi-Shape Matching. CVPR, 2021. 

Next steps: 
→ Apply the same principles to multi-shape matching

* Q-Match can solve QAP of sizes encountered in practical applications
→ claimed for the first time for a quantum method (CV/CG literature) 

* No explicit permutation constraints and the iterative approach allow us to 
outperform previous quantum SotA

→ both in terms of problem sizes and success probabilities 
* Q-Match outperforms a classical method 
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