

Motivations? Contributions!

(?) The combinatorial nature of Multi Model Fitting: MMF deals with finding the best parametric models explaining a set of noisy and outlier-corrupted observations. Since many explanations exist, MMF is inherently combinatorial.

(!) QuMF: by providing the first QUBO formulation for MMF, we are able to solve MMF problems with Adiabatic Quantum Computers.

(?) Scalability with Adiabatic Quantum Computers: AQCs are a class of quantum computers capable of solving QUBO problems in constant time. They support little resource allocation, and hence cannot scale to large problems.

(!) **DeQuMF**: we introduce an iterative shrinkage of the search space that enables large resource allocation on current AQCs.

MMF as **Disjoint Set Cover**

In a *preference matrix*, the columns are the models' **consensus sets**:

$$P[i, j] = \begin{cases} 1 & \text{if } error(x_i, \theta_j) < \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Disjoint Set-Cover

$$\min_{\mathbf{z}\in\mathbb{B}^m}\mathbf{1}_m^{\mathsf{T}}\mathbf{z} \quad \text{s.t. } P\mathbf{z}=\mathbf{1}_n$$

Nice, but... how does Quantum Annealing work?

<u>Matteo Farina⁽¹⁾</u> Luca Magri⁽²⁾ Willi Menapace⁽¹⁾ Elisa Ricci^(1,3) Vladislav Golyanik^{(4).} Federica Arrigoni⁽²⁾ University of Trento⁽¹⁾ Politecnico di Milano⁽²⁾ Fondazione Bruno Kessler⁽³⁾ Max Planck Institute, SIC⁽⁴⁾

QuMF: Quantum Multi-Model Fitting

QuMF (Quantum Multi-Model Fitting) addresses the combinatorial nature of Multi Model Fitting, by bringing a disjoint set-cover MMF formulation into QUBO form and employing Quantum Annealing

Soft Disjoint Set-Cover

DeQuMF: Decomposed QuMF

DeQuMF (Decomposed Quantum Multi-Model Fitting) tackles scalability.

It divides the QUBO into subproblems, and iteratively shrinks the search space by independently solving them with QuMF

DeQuMF enables tackling large-scale problems also on Quantum Hardware.

Quantum Multi-Model Fitting

Quadratic Unconstrained Binary Optimisation

 $\min \lambda \mathbf{z}^{\mathsf{T}} (P^{\mathsf{T}} P) \mathbf{z} + (\mathbf{1}_m - 2\lambda P^{\mathsf{T}} \mathbf{1}_n)^{\mathsf{T}} \mathbf{z}$

N	li

		Multi-X	J-Linkage	T-Linkage	RPA	RANSACOV	QUMF (SA)	DEQUMF	DEQUMF (SA)
Traffic3	mean median	0.32 0	1.58 0.34	0.48 0.19	0.19 0	0.35 0.19	5.14 2.85	8.74 7.50	0.55 0.28
Traffic2	mean median	0.09 0	1.75 0	1.31 0	0.14 0	0.54 0	6.04 3.17	-	0.10 0
York	mean median	-	2.85 1.80	1.44 0	1.08 0	0.19 0	12.29 3.78	-	0.74 0

Misclassification Error [%] on the Adelaide Dataset

	RANSACOV [1]	QUMF (SA)	DEQUMF	DEQUMF (SA)
mean	9.79	3.85	16.22	0.77
median	7.97	3.54	11.0	0.18

	Outlier ratio			
Algorithm	10%	20%	Full sequences	
QUMF (SA)	7.22	11.34	13.23	
DEQUMF	2.41	10.53	16.17	
DEQUMF (SA)	6.26	8.28	10.83	
HQC-RF [3]	3.71	37.0	45.84	

Finally, we study how DeQuMF behaves in a scenario falling completely out of its design: Single Model Fitting with outliers. Although not displaying SotA behaviour, DeQuMF exhibits robustness to increasing outlier ratio.

References & Acknowledgements

[1] RanSaCov: Magri, Luca, and Andrea Fusiello. "Multiple model fitting as a set coverage problem." CVPR 2016. [2] Visualisation of the QPU Topology graph from the official DWave Documentation. [3] HQC-RF: Doan, Anh-Dzung, et al. "A hybrid quantum-classical algorithm for robust fitting." CVPR 2022. [4] Arrigoni, Federica, et al. "Quantum Motion Segmentation." ECCV 2022

This paper is supported by FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence). This work was partially supported by the PRIN project LEGO-AI (Prot. 2020TA3K9N) and it was carried out in the Vision and Learning joint laboratory of FBK and UNITN.

Real Experiments

lisclassification Error [%] on the Hopkins and York Datasets

DeQuMF for Single Model Fitting

