

QuAnt: Quantum Annealing with Learnt Couplings

¹University of Siegen

Website (Code is available):

https://4dqv.mpi-inf.mpg.de/QuAnt/

4D and Quantum Vision Group

Marcel Seelbach Benkner¹ Maximilian Krahn^{2,3} Edith Tretschk² Zorah Lähner¹ Michael Möller¹ Vladislav Golyanik² ²Max Planck Institute for Informatics, SIC

Architecture & Problem Encoding

- Networks are either 3 or 5 layer MLPs with hidden dimensions of 32 or 78.
- Hidden layer activation is ReLU and the final activation is a sine function.
- 5 layer setup contains a skip connection from the first to the third layer and uses concatenation for the combination of feature streams.
- Encoding of solutions:
 - **Graph matching:** Binary representation of permutation table
 - **Point set registration**: Binning the angle intervals into equal sized bins
 - **3D rotation estimation:** Concatenating 3 binned angles into one vector
- Baselines:
 - **Diag**: Our method but we set all off-diagonal elements to zero
 - **Pure**: Same network but direct prediction without any QUBO solver

• Direct : Brute Force solution of the input quadratic assignment problem										
Results										
Graph matching on the Willow Dataset [2] (% of correct permutations):										
	Ours	Diag	Pure Dire	ct						
	69	53	90 97							
Point set registration on 2D shape dataset [3] (angle difference to ground truth):										
		Ours	Diag	Pure						
-	L=3, H=32	8.4 ± 0.8	11.1 ± 1.3	$\textbf{8.2} \pm \textbf{1.2}$						
-	L=3, H=78	7.2 ± 1.1	8.3 ± 0.7	9.3 ± 1.9						
	L=5, H=32	8.6 ± 0.5	10.9 ± 1.2	9.3 ± 1.9						
	I = 5, H = 78	6.8 ± 0.3	7.7 ± 0.5	11.3 ± 4.5						

3D rotation estimation on ModelNet10 [4] (angle difference to ground truth):

	Ours	Diag	Pure	
L=3, H=32	5.9 ± 3.0	$\textbf{5.4} \pm \textbf{1.0}$	7.9 ± 0.5	
L=3, H=78	$\textbf{4.1} \pm \textbf{0.5}$	5.0 ± 0.3	7.1 ± 0.1	
L=5, H=32	3.7 ± 0.8	5.0 ± 0.4	16.2 ± 7.1	
L=5, H=78	3.4 ± 0.4	4.7 ± 0.2	10.1 ± 1.8	

- Red bars in right-most histogram indicate projection to valid permutation.

[1]	Α.	Das,	et	al

- I., Quantum annealing in a kinetically constrained system, 2005 [2] Cho et al., Learning on Graphs ICCV, 2013
- [3] Carlier at al., The 2d shape structure dataset: A user annotated open access database, Computer &
- Graphics, 2016

³Aalto University

- similar results for test data in rotation estimation.
- Right hand side is the evolution during training on a quantum annealer.

References

• [4] Wu et al., 3d shapenets: A deep representation for volumetric shapes, CVPR, 2015