TEL AVIV 2022

Hiroyasu Akada^{1,2} Jian Wang¹ Soshi Shimada¹ Masaki Takahashi² Christian Theobalt¹ Vladislav Golyanik¹ ¹Max Planck Institute for Informatics, SIC ²Keio University

Overview

Goal

- Providing a new large-scale naturalistic dataset for egocentric 3D human pose estimation, *i.e.*, UnrealEgo

- Evaluating SOTA methods on a challenging dataset with a wide variety of motions that can be seen in daily human activities

- Proposing a new benchmark method that achieves state-of-the-art results on UnrealEgo

Datasets for Egocentric 3D Human Pose Estimation

	Monocular Setting		Stereo Setting		
	Mo2Cap2[1]	xR-EgoPose[2]	EgoCap[3]	EgoGlass[4]	
Device					
Example Data					
Distance to user's face	~8cm from the head	~2cm from the nose	~25cm from the head	$\sim 1 \mathrm{cm}$ from the head	~1c
Number of egocentric views	530k	380k	30k × 2 views	$170k \times 2$ views	4
Number of keypoints	body: 15	body: 25 hand: 40	body: 17	body: 13	
Image generation	composite	composite	lab environments	lab environments	3]
Image quality	low	realistic	real	real	
Motion diversity	middle	middle	low	low	

New Method for Egocentric 3D Human Pose Estimation A Two-step approach:

- 2D module for keypoint heatmap estimation and 3D module for 3D pose estimation

UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture

cm from the head

 $450k \times 2$ views body: 32

hand: 40 D environments

realistic

UnrealEgo Setup Glasses-based Setup (Unreal Engine)

- Two fisheye cameras attached on the glasses' frames - UnrealEgo provides RGB-D images captured at 25 fps with a resolution of 1024×1024 px, 3D keypoints, 2D keypoint heatmaps and height w.r.t. the ground - The largest dataset for egocentric 3D human pose estimation (903,208 images)

3D Human Characters - 9 female and 8 male models - Different types of clothing and skin colour

3D Environment

- A wide variety of indoor and outdoor scenes with different time of day and night

e.g., laboratory, factory, office, cafeteria, park, boulevards, football field, tennis court, football field and Japanese restaurant

Methods

Settings

4D and Quantum

Vision Group

Motions

- UnrealEgo contains daily human motions, ranging from simple to highly complex motions, such as walking, crouching, exercising, backflip, to name a few

Keypoints

- UnrealEgo uses the default skeleton of Unreal Engine
- UnrealEgo contains 72 keypoints in total: 32 for body and 40 for hands
- We use 16 keypoints for our experiments: neck, upper arms, lower arms, hands, thighs, calves, feet and balls of the feet

Distribution of Pelvis-relative 3D Keypoints - The keypoints of UnrealEgo are more widespread than those of xR-EgoPose [2]

3D Pose Estimation on UnrealEgo Quantitative Evaluation

MPJPE (std)	PA-MPJPE (std)
112.86(1.16) / 123.15(2.05)	88.71 (0.98) / 96.56 (1.27)
91.44 (0.84) / 107.70 (1.88) 79.06 (0.25) / 87.31 (0.57)	70.21 (0.90) / 84.22 (0.99) 59.95 (0.74) / 64.65 (0.93)

Evaluation based on — train/test/validation splits ___ of UnrealEgo

- Result with/without — ImageNet pre-training - Our method outperforms

the existing method by at least 10%

Red: prediction Blue: ground truth

See our project page for more details!

UnrealEgo Motions

- 4,841 motions in total: 3,821 for training, 494 for validation, and 526 for testing

3D skeleton used in UnrealEgo

References

[1] Mo2Cap2; Xu, et al., TVCG 2019 [2] xR-EgoPose; Tome et al., ICCV 2019 [3] EgoCap; Rhodin et al., SIGGRAPH Asia 2016

[4] EgoGlass; Zhao et al., 3DV 2021

Project Page

Check out our project page through the QR code above or URL below for

- Dynamic visualization of UnrealEgo
- Download link to UnrealEgo
- Source code on GitHub

https://4dqv.mpi-inf.mpg.de/UnrealEgo/

