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This supplementary material provides more details on
the experiments, including a detailed evaluation on the syn-
thetic dataset (Sec. 1), per-scene results of the ablation study
(Sec. 2), preliminary results on material editing and details
on the adaptive optimisation scheme (Sec. 3), and qualita-
tive results on all real sequences (Sec. 4).

1. Evaluation on the Synthetic Dataset
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Figure 1. We generate a new “¢-SfT synthetic dataset” of four
sequences with reference ground-truth meshes to facilitate quanti-
tative evaluation of monocular 3D surface reconstruction methods.

The ¢-SfT Synthetic Dataset is a new dataset of four
monocular RGB sequences of naturalistically deforming
surfaces with different textures generated using physics-
based simulation [1]. This is the same simulator used as
part of our reconstruction pipeline and hence can lead to a
small bias favouring our method. A flat square cloth of di-
mensions 1x 1m is provided in the form of a textured mesh
to the simulator at the beginning of the simulation. The
deformations at subsequent time points are caused by the
varying gravity and wind forces acting on the cloth. More-
over, we vary elastic material properties of the cloth across
the sequences, following Wang et al. [7]. Each sequence
contains 50 frames, and the mesh contains 289 regularly-
sampled vertices. Finally, the simulated cloth states are ren-
dered as virtual images using PyTorch3D tools [4]. The
rendered images serve as inputs to the evaluated methods,
and the obtained meshes are 3D ground truth. Fig. 1 shows
an overview of the generated synthetic sequences.
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Figure 2. We show qualitative results on all synthetic sequences.
For the given RGB image, the ground-truth mesh and recon-
structed mesh are visualised in the input camera view. ¢-SfT re-
constructs physically plausible and accurate surfaces.
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Evaluation Metrics The availability of vertex correspon-
dences in the synthetic dataset allows for more faithful
alignment as well as better metrics, i.e., per-frame Pro-
crustes over per-frame ICP, and e3p and e,, over C’~hg7 v In
particular, since vertex correspondences are known across
all surface states in the synthetic dataset, we align recon-
structions of all methods to the ground truth in a rigid-body
fashion using per-frame Procrustes. As in previous meth-
ods [2, 3, 5, 6], we use the 3D error assuming known cor-
respondences to express the reconstruction accuracy on the
new dataset:
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where G and V; are the vertices of the ground-truth and re-
constructed mesh, respectively, and ||-|| » denotes the Frobe-
nius norm. To better capture the error in local deformations,
we additionally compute the average per-vertex angular er-
ror in degrees:
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Figure 3. Qualitative comparisons of several tested methods [3, 5, 6, 8], including ¢-SfT, for an arbitrary frame of the synthetic S1 and S4
sequences. Our results are significantly more accurate and, unlike the other methods, are physically plausible.

Seq.|IsMo-GAN | N-NRSfM | DDD |Diff-NRSfM| Only F | ¢-SfT

€3D €n €3D €n| €3D €n| €3D €n| €3D €n| €3D €n
S$1]0.066 34.27| 0.167 34.34|0.043 33.86|0.053 11.30|0.054 12.73]0.042 11.86
$210.077 45.11 fail fail|0.036 25.20|0.055 11.35/0.069 14.92|0.023 10.62

$310.096 36.72| 0.113 26.36|0.066 42.16|0.077 17.59|0.059 15.83|0.033 9.12
$4|0.078 41.16] 0.077 24.36/0.023 19.86|0.063 5.69|0.043 9.33/0.005 2.61
Avg.[0.079 39.32]0.119* 28.35%|0.042 30.27|0.062 11.48|0.056 13.20|0.026 8.55

Table 1. Evaluation of compared methods and ¢-SfT on our syn-
thetic dataset using e3p and e, after rigid alignment with per-
frame Procrustes. N-NRSfM [6] failed on S2 (the missing error is
not considered when computing the averages, which are marked
with “*””). Our full method gives the most accurate results.

where g! € R3 and X! € R? are the unit normals at the
ith vertex in frame ¢ of the ground-truth and reconstructed
mesh, respectively.

Comparison/Results Similar to ¢-SfT’s real dataset eval-
uation, we compare our synthetic dataset results to SfT
methods, namely Yu er al.’s Direct, Dense, Deformable
(DDD) [€], and Shimada et al.’s IsMo-GAN [5], as well
as Sidhu et al.’s Neural NRSfM (N-NRSfM) [6] and
Parashar et al.’s Diff-NRSfM [3]. Since ground-truth
meshes are available for the synthetic dataset, we pro-
vide ground-truth 2D point correspondences as input to N-
NRSM and Diff-NRSfM. We provide DDD with the re-
quired hierarchy of coarse-to-fine templates. Additionally,
we show the result of a baseline (Only F) where the only
optimisation parameters are the correctives { F; };.

In Fig. 2, we show qualitative results on all synthetic se-
quences. @-SfT reconstructs physically plausible and accu-
rate surfaces. Fig. 3 shows that ¢-SfT outperforms related
methods qualitatively, similar to its performance on the real
dataset. This demonstrates that SfT and NRSfM, both rely-
ing on simple geometric prior assumptions, struggle to esti-
mate physically plausible surfaces. We also note that Diff-
NRSfM performs better on our synthetic dataset than our
real dataset, as the deformations here are global and smooth
(see Fig. 3, fifth column). We refer to Tab. 1 for mean ver-
tex error, e3p, and mean angular normal error in degrees,
en, on our synthetic data with per-frame Procrustes using
ground-truth correspondences. We outperform others on all

Sequence w/o F w/oadaptive w/oE; Full
S1 4.61 1.90 0.89 0.79

S2 3.28 5.78 275 4.16

S3 3.55 7.17 3.54 421

S4  36.13 13.37 891 7.60

S5 2555 8.64 754  6.15

S6 3.74 6.84 726 6.20

S7 1031 4.66 473 6.34

S8 4.17 3.34 271 252

S9 4.87 4.19 2.65 2.36
Average  10.69 6.21 533 448

Table 2. We report the Chamfer distance C~hG7 M (multiplied by
10* for readability) when ablating various design choices of our
method: the external forces (w/o JF), the adaptive optimisation
scheme (w/o adaptive), and the silhouette energy term (w/o E).
We use sequences from the new ¢-SfT real dataset.

synthetic sequences, except for Diff-NRSfM using e,, on
S1. As shown in Tab. 1, our method has the lowest average
esp, suggesting it better reconstructs global deformations,
and the lowest average e,,, suggesting it also better captures
local folds.

2. Ablation Study

We ablate the following design choices of our method: 1)
Operation without corrective forces F, 2) Influence of the
adaptive training by considering all frames from the start,
and 3) Disabling the silhouette term E. The per-scene
breakdown of the ablation experiments is in Tab. 2. The
correctives forces lead, on average, to the largest improve-
ment despite three scenes showing worse performance. The
adaptive scheme improves results on all scenes. FE helps
when the structure deforms and changes its shape in the re-
projection significantly, as is the case for most sequences.
However, S3, for instance, has fewer global deformations
and more significant local folds, in which case F/; does not



help (Fig. 5). Note that E is susceptible to errors in the
input segmentation whereas the photometric energy F,, is
(empirically) robust to them.

3. Miscellaneous
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Figure 4. We scale the bending parameters of our result of syn-
thetic scene S3 by factor 10 for less/more stiffness (we show the
last frame). The deformations introduced in coarse shape and local

folds suggest that intuitive editing is possible.

Material Editing We conduct a preliminary experiment
to demonstrate that the optimised physical parameters are
meaningful and inferred well enough to enable intuitive
editing. Given optimised physical parameters ¢*, we aim to
generate new deformations at test time by modifying the in-
ferred material parameters. To this end, we run the physics
simulation after scaling stretching stiffness S while re-using
the other physical parameters {d*, B*, w*, F*}. See Fig. 4
for the result.

Adaptive Optimisation Parameters By default, we start
with an initial active temporal window of ¢, = 5. How-
ever, we set t, = 3 on the real sequence S3 because it has
large global deformations in early frames. In case the opti-
misation cannot reach the threshold b for a given temporal
window, we set a maximum number of iterations 4,,,,, after
which we grow the window regardless. We set 7,4, = 5 by
default. However, we use a higher value of ¢,,,, = 10 for
sequences with difficult folds (real S2, S3) or large global
deformations (synthetic S1, S2, S3).

4. Qualitative Results

We show qualitative reconstruction results for arbitrary
frames on all real sequences in Fig. 5. ¢-SfT reconstructs
challenging surface deformations well by capturing both
coarse shape and local folds. Especially S3 and S4 in Fig. 5
show that our physics-based approach provides a reasonable
prior for self-occluded surface parts. Fig. 6 contains depth
maps reconstructed by our approach.
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Figure 5. We show qualitative results on all real sequences. For the given RGB image, the reconstructed mesh is visualised in the input
camera view as well as novel camera view. ¢-S{T accurately reconstructs the coarse shape and local folds.
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Figure 6. We show qualitative results as colour-coded depth maps on all real sequences. For the given RGB image, the ground-truth depth
map exhibits similar features as our reconstructed depth. Both the coarse shape and local folds are well captured.
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