State of the Art in **Dense Monocular Non-Rigid** 3D Reconstruction

Edith Tretschk* Navami Kairanda* Bernhard Egger Marc Habermann

Pascal Fua

Mallikarjun B R Rishabh Dabral Christian Theobalt

Adam Kortylewski Vladislav Golyanik

Friedrich-Alexander-Universität **Erlangen-Nürnberg**

ROGRAPHICS

Motivation

• Goal: 3D reconstruction of dynamic objects from monocular images

3D

Monocular 2D input

Lots of ambiguity:

- Depth? Occlusions?
- Texture vs. wrinkles?
- Texture vs. illumination?
- Correspondences?

•••

Reconstructed 3D geometry Reconstr

Reconstructed 3D geometry with texture

Kairanda et al. 2022

- Thank you to the authors of all the works in this STAR!
 - We tried our best and apologize for any mistakes we made!

Motivation

- Goal: 3D reconstruction of dynamic objects from monocular images
- Why? Make real world accessible to downstream tasks:
 - Novel view synthesis (telepresence, virtual reality)
 - Geometry acquisition for scene modelling (robotics, augmented reality)
 - Virtual asset creation (video games)
 - Editing for visual content creation (VFX, social media)
 - Motion analysis (physics, biology)

EUROGRAPHICS 202

Motivation

- Goal: 3D reconstruction of dynamic objects from monocular images
- Why this STAR now? Several breakthroughs in recent years:
 - Parametric models
 - Neural scene representations
 - Deep learning
 - High-quality, large-scale datasets
 - Powerful hardware

SAARBRÜCKEN EUROGRAPHICS 2023

Scope: Dense Monocular Non-Rigid 3D Reconstruction

Dense	Monocular	Non-Rigid	3D	Reconstruction
 Entire surface, not just sparse keypoints 	 Single RGB camera No active sensor (like depth cameras) Why? Easily accessible to everyone, no specialized setup and synchronization 	 Only deformable objects, not static But: Exclude human-specific methods that only estimate parameters of statistical shape models 	 True 3D representation Not image-based or intermediate (like light fields) 	 Represent observed state of the scene Does not need to be generative or editable
	Two typical cases:			

- Video: Single video of one scene
 - \rightarrow Temporal information
- Image collection: Many images, each of a different scene
 - \rightarrow No temporal information

SAARBRÜCKEN

EUROGRAPHICS 2023

Structure

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

2 Fundamentals

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Overview

Representing deformations

- Rendering and data terms
- Challenges and priors to tackle them

Geometry Representations Functions

- We split "representation" into its two components:
 - Function: Input-output relation
 - Parametrization: How to actually compute the function
- Typical geometry functions to represent a surface $S \subset \mathbb{R}^3$:
 - Indicator function:

$$s(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{else} \end{cases}$$

• A level-set function:

$$s(\mathbf{x}) = \min_{\mathbf{y} \in S} \|\mathbf{x} - \mathbf{y}\|_2$$

• A density function:

$$v(\mathbf{x}) = \text{density}(\mathbf{x})$$

Park et al. 2019

SAARBRÜCKEN

Appearance Functions

• Usually, simple models:

Appearance	Changes with viewing direction?	Model
Diffuse	No	Albedo: $c(\mathbf{x})$
Glossy/specular	Yes	Simplified: c(x, d) Full (BRDF): c(x, d, l)

Deformation Categories

2023

GRAPH

Dense Monocular Non-Rigid 3D Reconstruction

Geometry and Appearance Parametrizations

Geometry:

- Classically:
 - Point clouds and meshes as samples of the indicator function $s(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{else} \end{cases}$
 - Voxel grids for level sets and densities
- Neural:
 - Multi-layer perceptrons (MLPs) for levels sets and densities, e.g. density(\mathbf{x}) = MLP(\mathbf{x})

Appearance:

ROGRAPHICS

- Attach to each local unit, *e.g.* vertex
- If appearance is not important, Lambertian model is used, e.g. RGB color per vertex
- View dependence:
 - Classical: Spherical harmonics
 - Neural: $c(\mathbf{x}, \mathbf{d}) = MLP(\mathbf{x}, \mathbf{d})$

Deformation Parametrizations

- Ideally: Physics simulation
 - But: Difficult to model completely and computationally expensive
 - \rightarrow Non-physical approximations:

EUROGRAPHICS 2023

Overview

- Representing deformations
- Rendering and data terms
- Challenges and priors to tackle them

Dense Monocular Non-Rigid Reconstruction

- Inverse and ill-posed problem
- Data term: Infinitely many solutions!
- Additional prior: Constrain the solution space

General method structure?

EUROGRAPHICS 2023

Data Terms: Additional Inputs

Fuentes-Jimenez et al. 2022

Camera

Segmentations

Zheng et al. 2022

Optical Flow

Golyanik et al. 2020

2D Keypoints

SAARBRUCKEN

EUROGRAPHICS 2023

Data Terms: Rendering for 2D-3D Consistency

Differentiable rendering?

EUROGRAPHICS 2023

 \rightarrow Differentiable rasterization, volume rendering

DOI: 10.1111/cgf.14507 EUROGRAPHICS 2022 Volume 41 (2022), Number 2 D. Meneveaux and G. Patani STAR - State of The Art Report (Guest Editors) Advances in Neural Rendering A. Tewari^{1,6*} J. Thies^{2*} B. Mildenhall^{3*} P. Srinivasan^{3*} E. Tretschk¹ W. Yifan^{4,8} C. Lassner⁵ V. Sitzmann⁶ R. Martin-Brualla³ S. Lombardi⁵ T. Simon⁵ C. Theobalt¹ M. Nießner⁷ J. T. Barron³ G. Wetzstein⁸ M. Zollhöfer⁵ V. Golyanik¹ ¹MPI for Informatics ²MPI for Intelligent Systems ³Google Research ⁴ETH Zurich ⁵Reality Labs Research ⁶MIT ⁷Technical University of Munich ⁸Stanford University *Equal contribution synthesis of static and dynamic scenes, generative modeling of objects, and scene relighting. See Section 4 for more details on the various methods. Images adapted from [MST* 20, TY20, CMK* 21, ZSD* 21, BBJ* 21, LSS* 21, PSB* 21, JXX* 21, PDW* 21] @2021 IEEE Abstract Synthesizing photo-realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist), point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical computer graphics and machine learning to create algorithms for synthesizing images from real-world observations. Neural rendering is a leap forward towards the goal of synthesizing photo-realistic image and video content. In recent years, we have seen immense progress in this field through hundreds of publications that show different ways to inject learnable components into the rendering pipeline. This state-of-the-art report on advances in neural rendering focuses on methods that combine classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A key advantage of these methods is that they are 3D-consistent by design, enabling applications such as novel viewpoint synthesis of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling nonrigidly deforming objects and scene editing and composition. While most of these approaches are scene-specific, we also discuss techniques that generalize across object classes and can be used for generative tasks. In addition to reviewing these state-ofthe-art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude with a discussion on open challenges and social implications

I. Introduction

Synthesis of controllable and photo-realistic images and videos is one of the fundamental goals of computer graphics. During the last decades, methods and representations have been developed to mimic the image formation model of real cameras, including the handling of complex materials and global illumination. These methods are based on the laws of physics and simulate the light transport from light sources to the virtual camera for synthesis. To this end, all physical parameters of the scene have to be known for the rendering process. These parameters, for example, contain information about the scene geometry and material properties such as reflectivity or opacity. Given this information, modern my tracing

© 2022 The Author(s) Computer Graphics Forum © 2022 The Eurographics Association at Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Tewari *et al*. 2022

Data Terms: 2D-3D Consistency

Overview

- Representing deformations
- Rendering and data terms
- Challenges and priors to tackle them

Reconstruction: Inherent Challenges

Moreno-Noguer *et al*. 2010

Attributing fine-scale details to geometry vs. appearance?

Chan et al. 2022

OGRAPHICS

Reconstruction: Inherent Challenges

Occlusion

Verbin et al. 2022

EUROGRAPHICS 2023

Reconstruction: Parameterization Challenges

Topology Change

Explicit meshes (topology changes are challenging) Li *et al*. 2021

Implicit functions (no correspondences) Saito *et al.* 2020

EUROGRAPHICS 2023

Reconstruction: Parameterization Challenges

EUROGRAPHICS 2023

Reconstruction: Data Acquisition Challenges

Rudnev et al. 2021

Dense Monocular Non-Rigid Reconstruction

- Ill-posed inverse problem
- Data term: Infinitely many solutions!
- Additional prior: Constrain the solution space

General method structure?

 $\mathcal{L}(\theta) = \mathcal{L}_{data}(\theta) + \mathcal{L}_{prior}(\theta)$

EUROGRAPHIC

Priors

Hard priors: Geometry parameterization

Template Offsets

Kanazawa et al. 2018

Habermann *et al*. 2021

Linear Subspace Models/ Parametric Models/3DMMs

Loper et al. 2015

Soft priors? Next...

Geometry Soft Priors

Spatial Smoothness

- Laplacian
- Normal consistency
- MLPs

Nealen *et al*. 2006

Symmetry Constraints

2023

GRAPHICS

Wu et al. 2020

Deformation Soft Priors: Reference Geometry

2023 Dense Monocular Non-Rigid 3D Reconstruction

ROGRAPHICS

3D-Aware GAN Prior

Chan et al. 2022

EUROGRAPHICS 2023

Optimization: Finding the Right Parameters

Loss
$$\mathcal{L}(\theta) = \mathcal{L}_{data}(\theta) + \lambda \mathcal{L}_{prior}(\theta)$$

Optimal parameters $\theta^* = \arg_{\theta} \min \mathcal{L}(\theta)$

Optimization: Gradient-based techniques

3 State-of-the-Art Methods

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

3.1 General Objects

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

1. General Objects

- 1. Shape from Template
- 2. Non-Rigid Structure from Motion
- 3. Neural Scene Representations
- 4. Others
- 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

3.1.1 Shape from Template

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Shape from Template

EUROGRAPHICS 2023

Shape from Template: How is the Template Used?

Reconstructed Surfaces

Kairanda *et al*. CVPR 2022 (φ-SfT)

SAARBRÜCKEN

UROGRAPHICS 2023

State-of-the-Art SfT: Analytical Methods

Casillas-Perez *et al*. 2021 (Isowarp) Chhatkuli *et al*. 2016 Bartoli *et al*. 2015

State-of-the-Art SfT: Analytical Methods

Casillas-Perez et al. 2021 (Isowarp)

EUROGRAPHICS 2023

State-of-the-Art SfT: Neural Methods

EUROGRAPHICS 2023

State-of-the-Art SfT: Neural Methods

SAARBRÜCKEN

G

PHICS

2023

State-of-the-Art SfT: Neural Methods

SAARBRÜCKEN

UROGRAPHICS 2023

State-of-the-Art SfT: Energy-Based Methods

EUROGRAPHICS

2023

State-of-the-Art SfT: Energy-Based Methods

Kairanda *et al*. 2022 (φ-SfT)

Open Challenges

Generalizability

- Single deformable objects
- Evaluated on smooth deformations
- Missing background reconstruction
- Changing object topology
- Self-collision
- Assumptions

EUROGRAPHICS 2023

- Template availability
- Errors in image-to-template warp

3.1.2 Non-Rigid Structure from Motion

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Dense Non-Rigid Structure from Motion (NRSfM)

- Motion and deformation cues for 3D recovery
- Most SOTA methods follow the matrix factorization approach of Bregler et al.
- Prior assumption: Deformable shapes span low-rank subspaces

Input: Image and 3D template

OGRAPHICS

Non-Rigid Structure from Motion

Sidhu et al. 2020

Dense NRSfM: 2D Point Tracking

Taetz *et al*. 2016: Occlusion-aware video registration

Garg *et al*. 2013: Multi-frame optical flow / video registration

EUROGRAPHICS 2023

Dense NRSfM: Different Object Scales

Dense NRSfM: State of the Art

Different priors

Parashar *et al*. 2020 (Local NRSfM from Diffeomorphic Mappings)

Golyanik *et al*. 2020 (Dynamic Shape Prior)

Sengupta *et al*. 2021 (NRSfM with Topological Prior)

EUROGRAPHICS 2023

Neural Dense NRSfM

EUROGRAPHICS 2023

Neural Dense NRSfM

 $\mathbf{E} = \mathbf{E}_{data}(\boldsymbol{\theta}, \mathbf{z}, \mathbf{R}) + \beta \mathbf{E}_{temp}(\boldsymbol{\theta}, \mathbf{z}) + \gamma \mathbf{E}_{spat}(\boldsymbol{\theta}, \mathbf{z}) + \eta \mathbf{E}_{traj}(\boldsymbol{\theta}, \mathbf{z}) + \omega \mathbf{E}_{latent}(\mathbf{z})$

Sidhu *et al*. 2020

SAARBRUCKEN

EUROGRAPHICS 2023

Neural Trajectory Prior for Dense NRSfM

Dense NRSfM: Open Challenges

- NRSfM depends on 2D point tracks \rightarrow Difficult to obtain
 - Most methods evaluate on ground-truth 2D matches
 - Joint evaluation of 2D flow and regressed 3D shapes is rare
- NRSfM's assumptions (*e.g.* rigidity) are almost never fulfilled in practice
 - Closely related methods (Johnson et al. 2023) do not require 2D point tracks or 3D templates
- Saturation in NRSfM:
 - Marginal improvements on existing datasets
 - Small motions

EUROGRAPHICS 2023

• NRSfM only considers points in first frame \rightarrow Shape completion remains unsolved

3.1.3 Neural Scene Representations

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Neural Scene Representations

- New and very active area besides established SfT and NRSfM
- What do they have in common?
 - Crucially: NeRF-style scene representation and volumetric rendering
 - No template \rightarrow Also reconstruct background
 - Focus on novel view synthesis \rightarrow Density function \rightarrow Rather low-quality geometry
 - But: Better geometry (Johnson et al. 2023)

Neural Scene Representations

- New and very active area besides established SfT and NRSfM
- What do they have in common?

EUROGRAPHICS 2023

- Crucially: NeRF-style scene representation and volumetric rendering
- No template \rightarrow Also reconstruct background
- Focus on novel view synthesis \rightarrow Density function \rightarrow Rather low-quality geometry
 - But: Better geometry (Johnson et al. 2023)
- Slow: Many hours to reconstruct one scene
 - But: Recent methods only take a few minutes (Fang et al. 2022, Guo et al. 2022)
- Lots of different input annotations, *e.g.* camera parameters, optical flow, segmentation masks, static background points
- No standard datasets, mostly self-recorded videos (see also Gao et al. 2022)

How to Parametrize Deformations

EUROGRAPHICS 2023

- Trade off between challenging motion and long-term temporal consistency
 - Little progress in terms of reconstruction quality, rather shifting of trade off

3.1.4 Other Few-Scene Methods

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

1. General Objects

- 1. Shape from Template
- 2. Non-Rigid Structure from Motion
- 3. Neural Scene Representations
- 4. Others
- 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Other Methods for Few Scenes

- Methods that:
 - Do not fall into the previous categories
 - And reconstruct a single or a few scenes
 - \rightarrow Parametrizing each scene directly is still feasible

Yang et al. 2022

Method	Geometry	Correspondences	Number of Scenes
Yang <i>et al</i> . 2021: LASR	Mesh	RGB appearance	One video
Yang et al. 2021: ViSER	Mesh	RGB + learned features	A few videos
Yang et al. 2022: BANMo	NeRF	Pretrained features + RGB	A few videos
Yao et al. 2022: LASSIE	Mesh	Pretrained features	Ca. 30 images

• Common themes:

ROGRAPHICS 2023

- Differentiable rendering:
- Learned features:
- Neural representations:

Naturally connects 2D input and 3D reconstruction Robustness to appearance variations (*e.g.* from the environment, deformations, multiple individuals) Easier optimization than meshes

3.1.5 Learned Prior

EUROGRAPHICS 2023

1. Introduction

2. Fundamentals

3. State-of-the-Art Methods

1. General Objects

- 1. Shape from Template
- 2. Non-Rigid Structure from Motion
- 3. Neural Scene Representations
- 4. Others
- 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Data-Driven Priors

- Became possible due to deep learning and differentiable mesh rendering
- Training: Learn a prior from an image collection of many scenes
- Test: Regress scene parameters of an unseen scene

• General trends:

- Focus on CUB dataset of birds (Wah et al. 2011)
- Barely any qualitative improvement over a dozen papers:
 - Appearance: Fairly detailed (by sampling from the input image)
 - Geometry: Very coarse, e.g. wings or legs are still hardly reconstructed
- Reduce input annotations, explore alternative inputs like videos

Data-Driven Priors

• Recently: Noticeable improvements by allowing more variation from the template

Kokkinos *et al*. 2021: At training time, regress + *refine* deformations

Duggal *et al*. 2022: Neural representation + regress template for each image

UROGRAPHICS 2023

3.2 Humans

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior

2. Humans

- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Dense Monocular Human Reconstruction

In-the-wild Results

Li *et al*. 2021

EUROGRAPHICS 2023

Challenges

Large Displacements Loose Clothing

Self-Occlusions

He *et al*. 2022

EUROGRAPHICS 2023

Challenges

Piecewise rigid deformations + Non-rigid surface deformations

EUROGRAPHICS 2023

Template-Free

Parametric Models (SMPL, GHUM, etc.)

Template-Based

Gabeur et al. 2019

Zheng et al. 2021

EUROGRAPHICS

Template-Free Methods

Varol et al. 2018 (BodyNet)

Saito et al. 2019 (PIFu)

reconstructed geometry

2023 GRAPHICS

Dense Monocular Non-Rigid 3D Reconstruction

n-view inputs $(n \ge 1)$

3D occupancy field

textured reconstruction

Template-Free Methods

Weng et al. 2022 (Human-NeRF)

Template-Based Methods

EUROGRAPHICS 2023

DeepCap

Habermann *et al*. 2020

DeepCap

Habermann et al. 2020

Introducing Cloth Physics

Updated Template Mesh

single input image

pose and geometry

Li et al. 2021

2023 OGRAPHICS
Using Parametric Models

Deforming the Parametric Models

EUROGRAPHICS 2023 Dense Monocular N

Parametric Models as Geometric Priors

Joint Human-Scene Reconstruction

Wei et al. 2022 (NeuMan)

Future Directions

- Parametric models for geometry and appearance
- Tracking of topological changes
- Joint dense body capture (including hands, face, gaze, hair, etc.)
- Robustness and interpretability

Zhu et al. 2020 (DeepFashion3D)

SAARBRÜCKEN

EUROGRAPHICS 2023

3.3 Faces

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Input Reconstruction Geometry Input Reconstruction

What's Special About Faces?

• Easier to build priors!

- Relatively (human body) not much articulation
- Regular pattern: Symmetry, fixed parts, etc.
- Less diversity: No clothing, less accessories, etc.
- Availability of large-scale data
- Challenges:
 - Hair has complex geometry and topology
 - Even minor misprediction could lead to perceptually significant difference

Applications

weta

Movies / Gaming ©Weta

Mobile Applications ©Google

SAARBRÜCKEN

EUROGRAPHICS 2023

©Meta

Problem Statement

ROGRAPHICS 2023

Explicit Morphable Models

- Mesh-based representation
- Fixed resolution and topology

Pros:

• Gives SOTA on current benchmarks (at least for the non-hair region)

• Extensively researched

Cons:

• Hard to model thin structures and varying topology, *e.g.* hair

Implicit Morphable Models

- Continuous representation
- Can represent any topology with unlimited resolution

Pros:

- Can model complex geometry, *e.g.* hair
 - Easy to model and learn from largescale data

Cons:

Not as efficient as explicit models

GRAPHICS

Explicit Morphable Models

3D Scans

- Additive model
 - PCA: Blanz and Vetter 1999, ...
 - Blendshapes: Garrido *et al.* 2013, Wu *et al.* 2016, Thies *et al.* 2016, ...
- Multilinear model
 - Vlasic *et al*. 2005, Cao *et al*. 2014, Shi *et al*. 2014, ...
- Nonlinear model
 - Li *et al*. 2017, Ichim *et al*. 2017, Shin *et al*. 2014, ...
 - Model Type

Data Representation

ROGRAPHICS

Recent Surveys

- Zollhöfer *et al.* 2018 (State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications)
- Egger et al. 2020 (3D Morphable Face Models -- Past, Present and Future)

Explicit Morphable Models: Fitting

Explicit Morphable Models: FOCUS

Li *et al.* 2023 (To fit or not to fit: Model-based face reconstruction and occlusion segmentation from weak supervision)

Explicit Morphable Models: MICA

Zielonka et al. 2022 (MICA: Towards Metrical Reconstruction of Human Faces)

Explicit Morphable Models: Personalized Model

Grassal et al. 2022 (Neural head avatars from monocular RGB videos)

Implicit Morphable Models: Supervision

Supervised

• Photometric loss

Pros

• Expression disentanglement (Editablity applications)

Cons

- Poor latent space
- Doesn't generalize well

Unsupervised (Adversarial)

• GAN loss

Pros

• Good latent space (good random samples)

Cons

 Accuracy depends on the estimated camera pose distribution

SAARBRÜCKEN

Implicit Morphable Models: Supervised Training

Auto-decoder

Park *et al.* 2019 (DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation)

Implicit Morphable Models (Supervised Training): HeadNeRF

Hong et al. 2022 (HeadNeRF: A Real-time NeRF-based Parametric Head Model)

Implicit Morphable Models (Supervised Training): MoFaNeRF, MoRF

Wang et al. 2022 (MoRF: Morphable Radiance Fields for Multiview Neural Head Modeling)

SAARBRÜCKEN

Implicit Morphable Models: Adversarial Training

Deng *et al.* (GRAM)
Xiang *et al.* (HD-GRAM)

• Schwarz et al. (VoxGRAF)

JROGRAPHICS 2

023

Implicit Morphable Models: Supervised vs. Adversarial

Chan *et al*. 2022 (EG3D)

EUROGRAPHICS 20

Implicit Morphable Models: Fitting

Implicit Morphable Models: Comparison

Implicit Morphable Models: Person-Specific Model

Dynamic Neural Radiance Fields for 4D Avatars

Gafni et al. 2021 (Dynamic neural radiance fields for monocular 4D facial avatar reconstruction)

Implicit Morphable Models: Person-Specific Model

Zheng *et al.* 2022 (I M Avatar: Implicit morphable head avatars from videos)

Athar *et al.* 2022 (RigNeRF: Fully controllable neural 3d portraits)

SAARBRÜCKEN

EUROGRAPHICS 2023

Conclusion

- Explicit models struggle with complex topology and finer details
- Recent implicit models that use neural networks to build prior are overparameterized
- Metrically accurate generative models
- No non-person specific implicit model based methods exist that take advantage of video dataset

3.4 Hands

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Hands

- Highly articulated: Posedependent deformations
- Severe self-occlusions
- Shape from Template?
 - Requires 3D template
 - Not robust to occlusions
- Parametric 3D hand model as a prior, e.g. Romero et al. 2017 (MANO)

VR View

OGRAPHICS

3D Hand Models

(a) MANO

(b) DeepHandMesh (ours) (c) 3D reconstruction

Personalized high-res model: Moon *et al*. 2020 (DeepHandMesh)

Input image Re-projected hand mesh 3D (novel view) Hand texture model: Qian *et al.* 2020 (HTML)

Input image Re-projected hand mesh 3D (novel view) Implicit hand model: Corona *et al.* 2022 (LISA)

Dense Monocular Non-Rigid 3D Reconstruction

SAARBRÜCKEN

EUROGRAPHICS 2023

Hands

Different scenarios:

Single hand

2023

Two interacting hands

Hands and an object

Single Hands: Regression of MANO Parameters

Ge et al. 2019

Zhang et al. 2019

Boukhayma et al. 2019

Boukhayma et al. 2019

SAARBRÜCKEN

UROGRAPHICS 2023

Single Hands

Learning framework with a **temporal** component

Two Interacting Hands

Wang et al. 2020 (RGB2Hands)

Wang et al. 2022 (HandFlow)

SAARBRUCKEN

EUROGRAPHICS 2023

Hands and Objects

ROGRAPHICS 2023 Dense Monocular Non-Rigid 3D Reconstruction

Datasets for 3D Hand Pose Estimation

Zimmermann *et al*. 2019 (FreiHAND)

Hasson et al. 2019 (ObMan)

Chao et al. 2021 (DexYCB)

Moon *et al*. 2020 (InterHand2.6M)

Wang *et al.* 2022 (MultiHands)

Kwon *et al*. 2021 (H20)

ROGRAPHICS
Future Directions

- More geometric and pose-dependent details
 - Nails, hair and blood vessels
- Hands + *deformable* objects
- Relighting of hands under various illuminations
- Improved mesh collisions

3.5 Animals

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals

3. State-of-the-Art Methods

- 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
- 2. Humans
- 3. Faces
- 4. Hands
- 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Animals

- Task-specific motivation: Behavior analysis
- Here: Parametric animal models, not just a template
- Small area (about ten papers) Why?
 - No good datasets: Capturing animals is more difficult than capturing humans (lack of control, much wider variety)
 - But: SMAL parametric model (Zuffi et al. 2017) from quadruped toy animals
- Variety of works:

ROGRAPHICS 2023

- Going beyond SMAL shape space (Zuffi et al. 2018, Li et al. 2021)
- Video input (Biggs et al. 2018)
- Train on synthetic data, test on real data (Zuffi et al. 2019)
- Building SMAL-style models from 2D inputs
 - Dogs (Biggs et al. 2020), "breed-aware" (Rüegg et al. 2022)
 - Birds: Single species (Badger et al. 2020), multiple species (Wang et al. 2021)
- Retrieve good bird template, then deform (Wu et al. 2022)

Wang et al. 2021

4 Emerging Areas

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals

4. Emerging Areas

- 1. Physics
- 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

4.1 Physics

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Physics-Based Reconstruction

Phar et al. 2023(PBRT)

Geometric approximation of physical behavior

SAARBRÜCKEN

GRAPHICS

Physics-Based Reconstruction

Physics simulation as **soft constraint**

Physics Simulation Differentiable Rendering

GRAPHICS

Kairanda *et al*. 2022 (φ-SfT) Physics simulation as hard constraint

SAARBRÜCKEN

Dense Monocular Non-Rigid 3D Reconstruction

Physics-aware Deformations and

Body-Cloth Interactions

Separate Modeling of Clothing

Li et al. 2021

Physics-Based Reconstruction

- Last decade: Learning-based methods
- Emerging trend: Physics + learning
 - E.g. sparse reconstruction human motion capture

Similar ideas for reconstruction?

OGRAPHICS

Physics-Based Reconstruction: Future Directions

- Full physics modelling of complex objects
 - E.g. human skin, muscles, hair and clothing
- Need to account for many physical phenomena
 - E.g. contacts, collisions, elasticity, plasticity or fractures
- Integration with neural methods
 - Fast inference, memory efficient
 - Physics as loss functions (Raissi et al. 2019)
 - Differentiable physics simulation as a layer (Liang et al. 2019)

4.2 Event Cameras

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Event Cameras

Events: Changes in brightness, recorded asynchronously per-pixel

No motion blur

• HDR

Source: https://youtu.be/LauQ6LWTkxM?t=30

EUROGRAPHICS 2023

Reconstruction with Event Cameras: State of the Art

Xu et al. 2020 (EventCap)

Zou et al. 2021 (EventHPE)

Reconstruction with Event Cameras: State of the Art

Live Demo

ROGRAPHICS 2023

Hand Pose Prediction

Large-Scale Dataset

Rudnev et al. 2021 (EventHands)

Comparison to reconstruction with RGB:

- + Better synthetic-to-real generalization
- + High-speed motion reconstruction using much lower bandwidth
- Single or few events are not sufficient for reconstruction

5 Open Challenges

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Open Challenges

EUROGRAPHICS 2023

Large Scale	Multiple Objects		Data Bias		Model Variety
• Some NeRF-based methods handle nearby static background	• Explicit handling of multiple objects is in its infancy (Menapace <i>et al.</i> 2022)		 Datasets do not reflect real-world appearance distribution of people → Indirect bias in 		 Morphable and parametric models assume able-bodied individuals Also do not account
Fditability	Real-Time Performanc	e evaluation,			for individualistic
 Deformations make editing hard, especially fine details like wrinkles Comparatively easy for meshes 	 Some category-specific methods are real time (Tewari <i>et al.</i> 2018) Related settings like RGB-D or static RGB reconstruction are real time. 	ic e al	 direct bias in learning- based methods Benchmarks can quantify bias (Feng <i>et al.</i> 2022) 		like tattoos
 very difficult with neural scene representations 	time				

6 Social Implications

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Social Implications

• Many upsides as discussed previously, but some potential social downsides

Environment	Privacy and Consent	Inclusiveness	Authoritativeness	Accessibility
• GPUs need energy, special materials and production	 Need to be considered for human data Editability can lead to malevolently modified content → Countermeasures are an active research area 	 Need to cover a wider range of variation among people (see Open Challenges) 	 Specialized methods (e.g. for faces) can be reliable In legal contexts, general methods are unreliable for occluded regions 	 Papers, code, datasets, RGB cameras easily obtainable GPU resources somewhat accessible via cloud services

ROGRAPHICS 2023

7 Conclusion

EUROGRAPHICS 2023

- 1. Introduction
- 2. Fundamentals
- 3. State-of-the-Art Methods
 - 1. General Objects
 - 1. Shape from Template
 - 2. Non-Rigid Structure from Motion
 - 3. Neural Scene Representations
 - 4. Others
 - 5. Learned Prior
 - 2. Humans
 - 3. Faces
 - 4. Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

Conclusion

- Largest impact via neural networks:
 Deep learning, differentiable and neural rendering
 → New fields and problem settings now tractable
- Current state:

EUROGRAPHICS 2023

- General methods: Still in early phase but going beyond SfT and NRSfM seems promising
- Humans and faces: Maturing, photo-realism in most settings within reach
- Hands and animals: Still early, lots of problems remain unaddressed
- Lots of possibilities for the future:
 - Better data via larger, more diverse datasets?
 - Better geometry and appearance via neural scene representations?
 - Better deformations via physics?
 - Better robustness via event cameras?
 - Continued shift from appearance towards learned features via vision transformers, e.g. Oquab et al. 2023 (DINOv2)?
 - Completely new trends like diffusion, *e.g.* Jakab *et al.* 2023 (Farm3D)?

Thank You!

State of the Art in **Dense Monocular Non-Rigid 3D Reconstruction**

Edith Tretschk* Navami Kairanda* Mallikarjun B R Rishabh Dabral Bernhard Egger Marc Habermann

Pascal Fua

Adam Kortylewski Christian Theobalt Vladislav Golyanik

1. Introduction

- 2. Fundamentals
- State-of-the-Art Methods
 - **General Objects** 1.
 - Shape from Template 1.
 - Non-Rigid Structure from Motion 2.
 - **Neural Scene Representations** 3.
 - Others 4.
 - Learned Prior 5
 - 2 Humans
 - Faces 3
 - Hands
 - 5. Animals
- 4. Emerging Areas
 - 1. Physics
 - 2. Event Cameras
- 5. Open Challenges
- 6. Social Implications
- 7. Conclusion

EUROGRAPHICS 2023