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Motivation

Goal: 3D reconstruction of dynamic objects from monocular images

?

» 3D
Lots of ambiguity:
Depth?
Occlusions?
Monocular 2D input Texture vs. wrinkles? Reconstructed 3D geometry Reconstructed 3D geometry
Texture vs. illumination? with texture
Correspondences?
Kairanda et al. 2022

Thank you to the authors of all the works in this STAR!
We tried our best and apologize for any mistakes we made!



Motivation

Goal: 3D reconstruction of dynamic objects from monocular images

Why? Make real world accessible to downstream tasks:

Novel view synthesis (telepresence, virtual reality)
Geometry acquisition for scene modelling (robotics, augmented reality)

Virtual asset creation (video games)
Editing for visual content creation (VFX, social media)

Motion analysis (physics, biology)




Motivation

Goal: 3D reconstruction of dynamic objects from monocular images

Why this STAR now? Several breakthroughs in recent years:
Parametric models
Neural scene representations
Deep learning
High-quality, large-scale datasets
Powerful hardware




Scope: Dense Monocular Non-Rigid 3D Reconstruction

Dense Monocular Non-Rigid 3D
« Entire « Single RGB camera * Only deformable * True 3D
surface, « No active sensor objects, not static representation
not just (like depth cameras) « But: Exclude * Not image-based
sparse human-specific or intermediate
keypoints * Why? Easily methods that only (like light fields)
accessible to estimate
everyone, no parameters of
specialized setup statistical shape
and synchronization models

Reconstruction

Represent
observed state
of the scene
Does not need
to be generative
or editable

Two typical cases:
Video: Single video of one scene
- Temporal information
Image collection: Many images, each of a different scene
- No temporal information
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Overview

- Representing deformations
Rendering and data terms
Challenges and priors to tackle them
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Geometry Representations Functions

We split “representation” into its two components:
Function: Input-output relation
Parametrization: How to actually compute the function

Typical geometry functions to represent a surface S C R”:

Indicator function: . . /. Deson
—— boundary
1 ifxes 5 f o7 o dahes
S(X) — ° o o
0 else ¢ SDF>0
: 2 SDF <0 .
A level-set function: @ <

s(X) = min||x —
(x) = min|x ]}

A density function:
v(x) — density(x) Park et al. 2019



Appearance Functions

Light
Observer — vicying — Plrectiont
«-Direction d ot

m
Point x
- Usually, simple models:

Diffuse No Albedo: c(x)

Glossy/specular Yes Simplified: c(x,d)
Full (BRDF): c(x,d,])
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Deformation Categories
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Geometry and Appearance Parametrizations

Geometry:
Classm.ally: . | | ifxes
Point clouds and meshes as samples of the indicator function s(x) = 0 el
Voxel grids for level sets and densities clse

Neural:
Multi-layer perceptrons (MLPs) for levels sets and densities, e.g. density(x) = MLP(x)

Appearance:
Attach to each local unit, e.g. vertex
If appearance is not important, Lambertian model is used, e.g. RGB color per vertex

View dependence:
Classical: Spherical harmonics o ® %
Neural: ¢(x,d) = MLP(x,d) %L ¢ % e
de N ¥ Lk KA w»
ds KX # ¢ % XKk




Deformation Parametrizations

|ldeally: Physics simulation
But: Difficult to model completely and computationally expensive
- Non-physical approximations:

Template Offsets Skinning Linear Subspace Models/
Parametric Models/3DMMs

!ﬂg
By Y

Kanazawa et al. 2018 Habermann et al. 2021 Loper et al. 2015



Overview

Representing deformations
- Rendering and data terms
Challenges and priors to tackle them
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Dense Monocular Non-Rigid Reconstruction

Inverse and ill-posed problem General method structure?

Data term: Infinitely many solutions!
L(0) = Lagta(0) + Lprior @)

ﬁ 2
8 8

Additional prior: Constrain the solution space

Habermann et al. 2020 Saito et al. 2020



Data Terms: Additional Inputs

template Segmentations
( - Camera
< vteXturenf?p‘ @ /L ’ 5 '
v & .
textured 3D model of th 2 *!
i u:)tte)ject irr?:r:sto i Pl v ' '
AAAAAAA configuration | {8Dshape Ve

Zheng et al. 2022

Golyanik et al. 2020



Data Terms: Rendering for 2D-3D Consistency

Reconstruction Rendering

Differentiable rendering?
- Differentiable rasterization, volume rendering

DOL 10111 1 /egf. 14507
EUROGRAPHICS 2022

D. Meneveaux and G. Patane
(Guest Editors)

Violume 41 (2022), Number 2
STAR — State of The Art Report

Advances in Neural Rendering
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Abstract

Synehesizing photo-realistic images and videos is ar the heart of computer graphics and has been the focus of decades of

research. Tradirionally, syntheri
tracing, which iake specifically define

images of a scene are generated using rendering algorithms such as rasterizasion or ray
d representasions of geomerry and maerial properties s inpur. Collectively, these inputs

define the actual scene and what is rendered, and are referred 1o as the scene representation (where a scene consisis of one

or more objects). Example scene represeniations are triangle meshes with accompanied textures (e.g.
Jfrom a depth sensor), volumetric grids (e.g., from a CT scan), or implicir surface funcrions (e.g., inmcated

point clouds (e

created by an artist),

signed distance fields). The reconstruction of such a scene representation from observe using differentiable rendering
losses is known as inverse graphics or inverse rendering. Newral rendering is closely reiaied, and combines ideas from classical
computer graphics and machine learning to creaie algorithms for synthesizing images from real-world observations. Neural
rendering is a leap forward rowards the goal of synthesizing photo-realistic image and video content. In recent years, we have
seen immense progress in this field through hundreds of publications that show differens ways to inject leamable components
into the rendering pipeline. This siate-of-the-art report on advances in neural rendering focuses on methods thar combine
classical rendering principles with leamed 3D scene represensations, ofien now referred 10 as newral scene representaiions. A
kev advaniage of these methods is that they are 3D-consistent by design, enabling applicarions such as novel viewpoins synthesis
of a capiured scene. In addition 1o methods thar handle siatic scenes, we cover neural scene representations for modeling non-

rigidly deforming objects and scene editing and composition. While most of these approaches are scene-specific, we also dis
techniques that generalize across object classes and can be used for generative rasks. In addition o reviewing these siate

the-art methods, we provide an overview of fundamenial conceprs and definitions used in the current lierarure. We conclude

with a discussion on open challenges and social implications.

L Introduction

Synthesis of controllable and photo-realistic images and videos is
one of the fundamental goals of computer graphics. During the
last decades, methods and representations have been developed
to mimic the image formation model of real cameras. including
the handling of complex materials and global illumination. These

ics Ausacitisn 334 foba

cLut

Tewari

methods are based on the laws of physics and simulate the light
transport from light sources to the virtual camera for synthesis. To
this end, all physical parameters of the scene have to be known for
the rendering process. These parameters. for example. contain in-
formation about the scene geometry and material properties such as
reflectivity or opacity. Given this information. modern ray tracing

waw.ag.org

dight.eg.0rg

et al. 2022



Data Terms: 2D-3D Consistency

Photometric
Consistency

Predicted Images

Perceptual Consistency
Patch O

Input Images

Reference Patch 1

/

Zhang et al. 2018

Consistency of Learned Features

Canonical Space

DensePose CNN

T

Image Space at t1

Image Space at t2

Yang et al. 2022




Overview

Representing deformations
Rendering and data terms
- Challenges and priors to tackle them
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Reconstruction: Inherent Challenges

Monocular Depth Ambiguity
3D Shape 2D Proj.

Attributing fine-scale details to
geometry vs. appearance?

Gr. Truth

Disparity Map
from Stereo

LATAATNK

A L P )

Chan et al. 2022

Three Possible Interpretations

Moreno-Noguer et al. 2010



Reconstruction: Inherent Challenges

Occlusion

View-dependence

Verbin et al. 2022




Reconstruction: Parameterization Challenges

Topology Change

Explicit meshes (topology changes are challenging)
Li et al. 2021

Implicit functions

(no correspondences)
Saito et al. 2020

SAARBRUCKEN
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Reconstruction: Parameterization Challenges

|dentity-Deformation Ambiguity

~

Expression

%

Identity

Geometry Reflectance

RS

Tewari et al. 2017
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Reconstruction: Data Acquisition Challenges

Background Motion Blur

Rudnev et al. 2021



Dense Monocular Non-Rigid Reconstruction

Ill-posed inverse problem General method structure?

Data term: Infinitely many solutions!

L(O) = Lggra(0) + Lprior(e)

m/ 2
8 8

Additional prior: Constrain the solution space




Priors

Hard priors: Geometry parameterization

Template Offsets

Ay,

-

IV |4

Kanazawa et al. 2018

Soft priors? Next...

SAARBRUCKEN
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Skinning

%

Habermann et al. 2021

Linear Subspace Models/
Parametric Models/3DMMs

Dense Monocular Non-Rigid 3D Reconstruction



Geometry Soft Priors

Spatial Smoothness

Laplacian
Normal consistency
MLPs

l.,

Nealen et al. 2006

et al. 2020




Deformation Soft Priors: Reference Geometry

Bronstein et al. 2005

Metric-based prior
- |sometric
+ Conformal

(a) Original surface (b) Isometric (c) Non-isometric
transformation transformation

D TATAVAVAYa;
,.ﬁ%ﬁ%ﬁﬂmm ]

\f .
P R s T AN
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3D-Aware GAN Prior

)
g A 2+ 5 4 ™
c on 2
/A 2t 2
° g9 :
Latent Sampling Q S a% -k
q_ . . .
\_ ) a8 %« §- \ e \_ Discriminator
LA—/

S\

Camera Pose

Chan et al. 2022



Optimization: Finding the Right Parameters

Loss L(O) = Lyara(0) + /u:prior(e)
Optimal parameters 0" = argg min L(6)

Optimization: Gradient-based techniques
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Introduction
Fundamentals

3. State-of-the-Art Methods

1. General Objects
1. Shape from Template
Non-Rigid Structure from Motion
Neural Scene Representations
Others
Learned Prior

3 ° 1 ° 1 Humans
Faces
Hand
Shape from o
Emerging Areas

Template

Event Cameras
Open Challenges
Social Implications
Conclusion
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Shape from Template

the physical
R object is moved
and deformed

- RGB, intrinsics *

Single Image

Input

Output

template

textured 3D model of the:
object in a rest
configuration

(-

 texturemap |

2
Jm‘

3D shape

reconstruction

- depthmap or 3D model

- of the object as seen in
the input imageand
expressed in camera

coordinates

Monocular Video

Template

3D Reconstructions




Shape from Template: How is the Template Used?

Output

Input

> Depth Map

Warp-U Map

Fuentes-Jimenez et al. 2022 (DeepSfT)

Warp-V Map

( Template )

Physical Parameters @
Density Wind
Stretching Corrective a
Stiffness Forces
Bending Physics Simulation
PS(.,9)

Stiffness

Simulated States as
Reconstructed Surfaces

Kairanda et al. CVPR 2022 (-SfT)

Lg{r[moqu

(Template Volume Vr Cﬁ ~ Deformed Volume Vs C R?

|
- Image |
g Projection | 11
2 . v
k5 SurfacelEmbedding - known
L

N

| 2
Flattened 7 C R 1 Warp Image 7 C R?
Template

Parashar et al. 2015



State-of-the-Art SfT: Analytical Methods

SLiface

S

Embedding X; Perspective

projection

11,

Reprojection 7) — Hp O Xz
somewy Jy Jx, = Uy

Template

Casillas-Perez et al. 2021 (Isowarp)
Chhatkuli et al. 2016
Bartoli et al. 2015

SAARBRUCKEN
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State-of-the-Art SfT: Analytical Methods

IsMo-GAN DeepSIfT BS-Isowarp BS-warp+Ref

Frame 140

8.39 0.89 1.4

(h)

0.87 0.86

Frame 155 7.89

Casillas-Perez et al. 2021 (lsowarp)



State-of-the-Art SfT: Neural Methods

Template 3D Deformed Surface
TcR ScR?

Reconstruction

Xvis

Projection T[]

Texture Map
A

)




State-of-the-Art SfT: Neural Methods

Warp-V Map

Output
3D Shape
Main Block
SUNNE Concatenate o _T_ oY
| s
As-Rigid- 1
Input Depth Refinement Block : As-PosZib'e 1
1 2 1
,postprocessing
. Depth Map [ ==
b “ 'y

1 1

® Upsampling Encoding Convolutional Block MaxPooling 1 |
I 1

@ Batch Normalization Decoding Convolutional Block Activation Sigmoid 1 | Output
1

Convolutional Layer Activation Relu @ I|dentity Block Input Layer | : “

! 1
) ] 7']
: | Warp-U Map
1
1
1

Warp-V Map




State-of-the-Art SfT: Neural Methods

Method

Ground-truth 3D surface DS1 Input Image

e e

3D Reconstruction & RMSE colormap  Registration ROI & RMSE colormap

CH17+DOF

CH17R+DOF

NGOI5

HDM-net

IsMo-GAN

R50F

DeepSft

)
=

-

-
.

QOcclusions
Dataset DS4 DS3
Reconstruction u
ITllumination Changes
Dataset DS4 DS4
Input
Reconstruction

Fuentes-Jimenez et al. 2022 (DeepSfT)



State-of-the-Art SfT: Energy-Based Methods

Template S, ( ERRRRRPH \ B & Texture Camera
PRV RN o 4 Map T Intrinsic
kr'f;':‘ , .:;)
(Physical parameters & ) [, BN )
Density d Wind w %{ SR8 A g
: &7 e e s S
Stretching Corrective O H ]’f'.;i N e g @
Stiffness S Forces {F,}; o i ’} (8 amamReRN _ : E
Bending Physics Simulation 'g"gf RASIESIEST 4 Differentiable
\_ Stiffness B ) PS(.,®) \_ Rendering R(.) Energy
Simulated States as
Reconstructed Surfaces
Update @ {S¢}e
Predicted Images R({S;}, T) Input Images {I;};
Known Unknown Reconstructed

Kairanda et al. 2022 (¢-5SfT)



State-of-the-Art SfT: Energy-Based Methods

Input RGB ~ ®-SfT(Ours) Ngo2015 DDD IsMo-GAN

Kairanda et al. 2022 (¢-5SfT)

SAARBRUCKEN
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Open Challenges

Generalizability
Single deformable objects
Evaluated on smooth deformations
Missing background reconstruction
Changing object topology
Self-collision

Assumptions
Template availability
Errors in image-to-template warp
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Social Implications

Conclusion
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Dense Non-Rigid Structure from Motion (NRSfM)

Motion and deformation cues for 3D recovery
Most SOTA methods follow the matrix factorization approach of Bregler et al.
Prior assumption: Deformable shapes span low-rank subspaces

Non-Rigid Structure from Motion

Shape from Template peter )—» o %
rame E
I NN (VAVAVAVAYA) = —
,'L;*\’_“_lﬂlli[i\}f 2 g
PRRRN S 3 g
70 A VNN AN @ 8
S RNARSESRY — |5 :
NSNS = |z s
R SRS R g
VAV V2 S N Pl 2 S . o .
’l“ {:Jﬁl ‘{l“f"‘%. : i =
NSERIA i ;‘-ﬁw“ﬁ - S &
S S TAA\ VAN P4 VAP | ) >/ a
H“'~“--Tl‘,t‘.,.~ ™
-
H_I \. v J H_l
Input: Image and 3D template W R S

Input: 2D point tracks

Sidhu et al. 2020



Dense NRSfM: 2D Point Tracking

Iref I1 I2 IF
SRR nunnuenununnunununnnnIIIIEMImM

& @ o T

V. Y ‘@?\ R B IQR Input
N> &t, %:" 7 k* Vil Sedquence
V- ¥ N

0 02 04 06 08 1

Flow

Stage 2 Stage 3

u(x;1) u(x;2)

Garg et al. 2013:
Multi-frame optical flow /
video registration

Taetz et al. 2016:
Occlusion-aware video registration

Occluded in the image



Dense NRSfM: Different Object Scales

Animal face Human back Human body tissues



Dense NRSfM: State of the Art

Different priors

)

Reconstruction for Frame #36

~— A

(0

!
! Fitting the TTP to
!\ reconstructed 3D points

? S i |-

. I 77

. Reconstructed mesh
Parashar et al. 2020 (Local NRSfM Golyanik et al. 2020 Sengupta et al. 2021

from Diffeomorphic Mappings) (Dynamic Shape Prior) (NRSTM with Topological Prior)
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Neural Dense NRSfM

refer. I

"

axis-angle representation
3D shapes in a canonical frame

no Espat

X component
]
8
X

,
\.

<

(@ QD@

O

oy

I
W

=

E = Eqata(0,2, R) + 8 Etemp (0, 2) + 7 Espat (0, 2) + 1 Et4j(0,2) + w Ejatent (2)

Sidhu et al. 2020
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Neural Trajectory Prior for Dense NRSfM

Neural trajectory prior Applications
(i) spatial smoothness (iii) compressibility (a) NRSfM
- 5 —>
P— A o - fa (0),\
(u,v) or = /-
.5:2,%) MLP weight decoder v)

(if) temporal smoothness (b) scene flow integration

tl—> f:’: _’[Tlé“' K %

continuous traj. basis functions * weights

IIIIQ T BT
Canonical frame

frame 50

(a) GT (b) W/o for Iz (c) w/o f, (d) full

Trajectory Canonical

Code Field Reconstruction Wang et al. 2022



Dense NRSfM: Open Challenges

NRSfM depends on 2D point tracks - Difficult to obtain

Most methods evaluate on ground-truth 2D matches
Joint evaluation of 2D flow and regressed 3D shapes is rare

NRSfM’s assumptions (e.g. rigidity) are almost never fulfilled in practice
Closely related methods (Johnson et al. 2023) do not require 2D point tracks or 3D templates

Saturation in NRSfM:

Marginal improvements on existing datasets

Small motions

NRSfM only considers points in first frame - Shape completion remains unsolved
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Neural Scene Representations

New and very active area besides established SfT and NRSfM

What do they have in common?

Crucially: NeRF-style scene representation and volumetric rendering

No template - Also reconstruct background

But: Better geometry (Johnson et al. 2023)

Geometric Ground Truth
Proxy Geometry

Input Image

Johnson et al. 2022



Neural Scene Representations

New and very active area besides established SfT and NRSfM
What do they have in common?
Crucially: NeRF-style scene representation and volumetric rendering
No template - Also reconstruct background

Focus on novel view synthesis - Density function - Rather low-quality geometry

But: Better geometry (Johnson et al. 2023)
Slow: Many hours to reconstruct one scene

But: Recent methods only take a few minutes (Fang et al. 2022, Guo et al. 2022)

Lots of different input annotations, e.g. camera parameters, optical flow,
segmentation masks, static background points

No standard datasets, mostly self-recorded videos (see also Gao et al. 2022)



How to Parametrize Deformations

Time Conditioning: Ray Bending:
Entangle deformation with Disentangle deformation from
geometry and appearance geometry and appearan

—> Challenging motion

v(x) = (0,¢) v(x(@ = (o,¢)

Trade off between challenging motion and long-term temporal consistency
Little progress in terms of reconstruction quality, rather shifting of trade off
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Other Methods for Few Scenes

Methods that:
Do not fall into the previous categories
And reconstruct a single or a few scenes
Parametrizing each scene directly is still feasible Yang et al. 2022

Wethod ] Geometry | Correspondences | Number of Scenes
Yang et al. 2021: LASR Mesh RGB appearance One video

Yang et al. 2021: ViSER Mesh RGB + learned features A few videos

Yang et al. 2022: BANMo NeRF Pretrained features + RGB A few videos

Yao et al. 2022: LASSIE Mesh Pretrained features Ca. 30 images

Common themes:
Differentiable rendering: Naturally connects 2D input and 3D reconstruction

Learned features: Robustness to appearance variations (e.g. from the
environment, deformations, multiple individuals)

Neural representations: Easier optimization than meshes
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Data-Driven Priors

Became possible due to deep learning and differentiable mesh rendering
Training: Learn a prior from an image collection of many scenes
Test: Regress scene parameters of an unseen scene

Shape

fé

‘ Kanazawa et al. 2018 (CMR)

General trends:

Focus on CUB dataset of birds (Wah et al. 2011)

Barely any qualitative improvement over a dozen papers:
Appearance: Fairly detailed (by sampling from the input image)
Geometry: Very coarse, e.g. wings or legs are still hardly reconstructed

Reduce input annotations, explore alternative inputs like videos



Data-Driven Priors

Recently: Noticeable improvements by allowing more variation from the template

Kokkinos et al. 2021: Duggal et al. 2022:
At training time, regress + refine deformations Neural representation + regress template for each image

CMR Ours-Mesh  Ours-Texture CMR Duggal et al.

-
 a
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Dense Monocular Human Reconstruction

In-the-wild Results

-
=2

FTEEETEET e 1

o W W e

WS i

Inpu_t/lmaéé

Li et al. 2021




Challenges

Large Displacements Loose Clothing Self-Occlusions

-

He et al. 2022



Challenges

Piecewise rigid deformations  + Non-rigid surface deformations

Our Results

Overlay




Taxonomy

Template-Free Parametric Models Template-Based
(SMPL, GHUM, etc.)

/

Segmented
Input Image 7, Template Mesh M

Gabeur et al. 2019 Zheng et al. 2021 Jiang et al. 2022



Template-Free Methods

2D pose los 2D
po;e 058 £ 3D pose loss ﬁqD Volumetm. loss E

L
4
®* —)
gﬁ /‘
volumetric SMPL
shape fit
Re- pro;ecnon loss  Re-projection loss

EFV ﬁSV

2D segmentation loss ,CS
end-to-end L+ [:ng - C:}D + L, + Clljv + C;?V optimization

Varol et al. 2018 (BodyNet)

input image (s) Surface Reconstruction —

PIFu (vVx, vz)

i xf insi X,
no P o=

image encoder | 7/

Texture Inference —
Tex-PIFu (vx,Vz)

fe( / @) = RGB x”
Training image encoder

Testing
Marching ﬁoﬁ i *
. ( . )
~ PIFu - ‘ \l 1 Tex-PIFu |+ .

n-view inputs (n = 1) 3D occupancy field reconstructed geometry textured reconstruction

Saito et al. 2019 (PIFu)




Template-Free Methods

Weng et al. 2022 (Human-NeRF)



Template-Based Methods

Multi-View Imégés Skeleton Embedded Graph Textured Template Mesh



DeepCap

Segmented Input
Image

PoseNet

Skeletal Pose Parameters

Surface Deformation Parameters

3D pose supervision

3D surface supervision

Habermann et al

. 2020



DeepCap

Multi-view
2D detections

|

S-
Skeletal Pose Parameters

N/
,.———‘/Q\—'—wo
Segmented Input
Image | | ~,
f , |

R

Multi-view
Surface Deformation Parameters ZD maSkS

| N

Habermann et al. 2020



Introducing Cloth Physics

Body Cloth Body  Cloth Body

| l A | ' _ physics-aware
R o . b4 deformations
& 1A f Py

N ;A\ . A\ /1 (\ X \\
»/Ki\ ’\

single input image pose and geometry clothes modeling

Updated Template Mesh Li et al. 2021



Using Parametric Models

GHUM(L) SMPL SCAPE

(Xu et al. 2020) (Loper et al. 2015) (Anguelov et al. 2005)

SAARBRUCKEN
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Deforming the Parametric Models

Xiang et al 2020 (MonoClothCap)

TTTTT h

T(8,0) + D*(z*) T(8,0)+D'(z') T(8,0)+D(@) M°(5,6,2)
90 to t
91 tlT “ t
’ : S(T) ng(I .4 Nop(T, T,4)
——————— e

Alldieck et al. 2019
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Parametric Models as Geometric Priors

Surface Reconstruction -
PIFu (Vx,Vvz)

(P @) =,

Texture Inference —
Tex-PIFu (vVx, Vz)

fo o= || Y

Semantic-Aware
X Geometry Encoder
2

Training image encoder
Testing

Parametric models provide strong
geometric features

________________

(137 0t7 Tt)

SAARBRUCKEN

imGHUM

Ad
Residual SDF

v

NeRF

.

Xu et al. 2022 (H-NeRF)

' Pixel-aligned Feature

=
g
=
| Voxelization

Voxel-aligned Feature

© Zheng et al. 2021 (PaMIR)

Concatenated Feature

|

EUROGRAPHICS 2023

Dense Monocular Non-Rigid 3D Reconstruction




Joint Human-Scene Reconstruction

-  . Scm - -
Single video

MNovel poses

Human model

Wei et al. 2022 (NeuMan)
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Future Directions

Parametric models for geometry and appearance

Tracking of topological changes
Joint dense body capture (including hands, face, gaze, hair, etc.)

Robustness and interpretability

Zhu et al. 2020 (DeepFashion3D)



Introduction
Fundamentals

3. State-of-the-Art Methods

General Objects
Shape from Template
Non-Rigid Structure from Motion
Neural Scene Representations
Others
Learned Prior

3 . 3 Humans
3. Faces
d
Faces o
Emerging Areas

Physics
Event Cameras

Open Challenges
Social Implications
Conclusion

SAARBRUCKEN

EUROGRAPHICS 2023 Dense Monocular Non-Rigid 3D Reconstruction



Faces

LAY . BV A
s :' K
NS //

Input Reconstruction Geometry Input  Reconstruction



What’s Special About Faces?

Easier to build priors!
Relatively (human body) not much articulation
Regular pattern: Symmetry, fixed parts, etc.
Less diversity: No clothing, less accessories, etc.
Availability of large-scale data

Challenges:
Hair has complex geometry and topology
Even minor misprediction could lead to perceptually significant difference



Applications

Movies / Gaming
©Weta

VR/AR Mobile Applications
©OMeta ©Google



Problem Statement

Single Image

Chan et al. 2021 (EG3D) Li et al. 2023 (FOCUS)

SAARBRUCKEN

Monocular Video Controllable Avatar
Gafni et al. 2021 (NerFACE)
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Categorization

Explicit Morphable Models

* Mesh-based representation
» Fixed resolution and topology

Pros:
» Gives SOTA on current benchmarks
(at least for the non-hair region)
» Extensively researched

Cons:
 Hard to model thin structures and
varying topology, e.g. hair

Implicit Morphable Models
« Continuous representation
Can represent any topology with

unlimited resolution

Pros:

Can model complex geometry, e.g. hair

Easy to model and learn from large-
scale data

Cons:
Not as efficient as explicit models



Explicit Morphable Models

- Additive model
« PCA: Blanz and Vetter 1999, ...
+ Blendshapes: Garrido et al. 2013,
Wu et al. 2016, Thies et al. 2016, ...
*  Multilinear model
« Vlasic et al. 2005, Cao et al. 2014,
Shi et al. 2014, ...
+ Nonlinear model
« Lietal. 2017, Ichim et al. 2017,
Shin et al. 2014, ...
Data 3D Scans Model Type
Representation

Recent Surveys
- Zollhofer et al. 2018 (State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications)
- Egger et al. 2020 (3D Morphable Face Models -- Past, Present and Future)

SAARBRUCKEN
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Explicit Morphable Models: Fitting

E(P) =cholEcol(P) + WlanElan(P) + Wreg reg(P)

| _ data prwr
A

et ,L
o9

el | \

shape
albedo
illumination
expression

<
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Explicit Morphable Models: FOCUS

4 @© Expand the mask:
r d preserve face information

e _.l”‘ I S S S S S S e
o - 5
I M| D)
= vy £ ¢
2/ et der R | 11 &g
o g/ odel-based Face :h\utoenco er Segmentation g = g
B.E [ =) >
- a - shape Network § z -
— e N 7 - texture s —_ ) -
- = 0— n > b = 5
Z B\ ¢ - camera e a °
=\ @ - illumination = = B
= : S < = &
V\vl‘l g .r.
-

Li et al. 2023 (To fit or not to fit: Model-based face reconstruction
and occlusion segmentation from weak supervision)



Explicit Morphable Models: MICA

Generalized Metrical Shape Estimation

= =)
- -l
] Q
oc o<
+ +
|~ ~
© ©
()] Q
= c
pes | =

3D Reconstructionj
\
Trained on:
{ 12D Data
] 2D/3D Data
{ i 3D Data
3D Motion Tracking
\_ J

Zielonka et al. 2022 (MICA: Towards Metrical Reconstruction of Human Faces)
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Explicit Morphable Models: Personalized Model

Monocular Video

Grassal et al. 2022 (Neural head avatars from monocular RGB videos)

SAARBRUCKEN
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Implicit Morphable Models: Supervision

EU RO G:RAPHICS 25& Dense Monocular Non-Rigid 3D Reconstruction



Implicit Morphable Models: Supervised Training

r Qutput
Backprogate /

=)

Codes

Park et al. 2019 (DeepSDF: Learning Continuous Signed
Distance Functions for Shape Representation)

N

Auto-decoder




Implicit Morphable Models (Supervised Training): HeadNeRF

- :
’q /TN =
- K N 2
11 . b a
" =
Zid Zab  Zil i ) ; ; =
[dentity Expression Albedo [llumination /77 o |LR@| @@ tr%
(4]
A |
—_—
(‘| . IF IF
]
\ 77
y Volume Sdt 1 77 \¢
ih pendeting AR I 1c- vaD:
o = toRGB | (o)~ 32 o
& o
a, F o Bilin
( ) L] Qéb ﬂ Upsar |1I ng @ Add Operator E-
hﬁ zd Skip Connection Zin Latent Cades Ix1 Conv2D:(D,5p) = (2D,2,%) E
U V2D:(Dye8) = (D204 =3
F Volume Rendering U e P e
Implicit Function ‘ Leaky ReLu () PirelShufle

Hong et al. 2022 (HeadNeRF: A Real-time NeRF-based Parametric Head Model)



Implicit Morphable Models (Supervised Training): MoFaNeRF, MoRF

MoFaNeRF RefineNet
.r T X P !
I i 1 . I I I
App. a | H II I [ ! — View d I | :
| H 1 I
{ G ' | ! 1
: TEM (for training) l Color : :
Shape B ———1 — MLP ¢ 7 : |
: = : Volume : I
I ~ . Rendering, :
: K '
Exp. € ISM : & | :
I ) |
Densnyl . . .1
I
Position x +——— MLP —— MLP _,_T ICoarse Synthesis Fine Synthesis :

______________________________________________________

Zhuang et al. 2022 (MoFaNeRF: Morphable Facial Neural Radiance Field)

SUbjGCt Space Canonical Space @ Concatenation

-~ Deformation , o Spherical Harmonics

H./ x - —’ x
C : | Density Branch —
Canonical
Diffuse Branch ——H B
id - Identity NeRF <
Network

Wang et al. 2022 (MoRF: Morphable Radiance Fields for Multiview Neural Head Modeling)

Specular Branch — O



Implicit Morphable Models: Adversarial Training

MLP

Network Architectures

Latent
sampling

Chan et al. (pi-GAN) /:: : 2 Deng et al. (GRAM)
Schwarz et al. (GRAF) : Xiang et al. (HD-GRAM)
Or-El et al. (StyleSDF) 53 &
Chan et al. (EG3D) 3 * 3 ; Schwarz et al. (VoxGRAF)
) | ‘77'-7 S ; : .
\ Scene representations

Rendering

Camera pose
sampling

( (+/-) Super
\_  resolution) )

(" Differentiable )




Implicit Morphable Models: Supervised vs. Adversarial

%

o9

o

wn

Total - M g U
b z (J)

Iden | SR Q_ D

q) 1

Expr~ 3 8
Albe: m :
I z

Supervised
(Auto-Decoder) +
3DMM regularizaion

FPS 35

Adversarial

Hong et al. 2022 (HeadNeRF)

Chan et al. 2022 (EG3D)



Implicit Morphable Models: Fitting

Photometric
Loss

Latent
(Optimize)

W

input inverted output



Implicit Morphable Models: Comparison

AN/AIIQWOSD)  UONONISUOIY



Implicit Morphable Models: Person-Specific Model

Dynamic Neural Radiance Fields for 4D Avatars

1)

Novel Poses

#

»;

Novel Expressions A

4D Facial Avatar

Monocular Input Dynamic Neural Radiance
Sequence Field

Gafni et al. 2021 (Dynamic neural radiance fields for monocular 4D facial avatar reconstruction)



Implicit Morphable Models: Person-Specific Model

Correspondence
search

/ Given Zy | find zi st

h LBS
Implicit Morphing

3DMMDef((, Y, 2). fexp Bpose)

(Xag Vaps 2pp) = (0,3, 2) +
MM exp (DistToMesh(x, y, z))

N

@

Geometry

Ray Marching: find the nearest-surface intersection

Equality constraint:

For(z) =0

oce(z.) = 0.5
P(zq)=p

Differentiable .:

o, OF,, (x.) =1 OF,, (x.)
30):' Bmc 30}:‘

= (

3DMM Deformation Field

Canonical Space

Analytical
Gradient

o |t
- I’ canonical correspondence

Texture

. occ: occupancy value

C .l':,: sampled deformed point

,.: canonical surface intersection
ry4: deformed surface intersection
&' expression blendshapes

W: LBS weights

P: pose correctives

T': bone transformations

U7: expression parameters

P pixel location

P( - ): projection matrix

F: equality constraint function

O g2 learnable parameters of F'

Athar et al.

Zheng et al. 2022 (I M Avatar: Implicit morphable

head avatars from videos)

2022 (RigNeRF: Fully controllable neural
3d portraits)



Conclusion

Explicit models struggle with complex topology and finer details

Recent implicit models that use neural networks to build prior are over-
parameterized

Metrically accurate generative models

No non-person specific implicit model based methods exist that take
advantage of video dataset
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Hands

Highly articulated: Pose-
dependent deformations

Severe self-occlusions

Shape from Template?
Requires 3D template
Not robust to occlusions

Parametric 3D hand model as a

prior, e.g. Romero et al. 2017
(MANO)

L&)
VR View



3D Hand Models

Input image  Re-projected hand mesh 3D (novel view)

Hand texture model: Qian et al. 2020 (HTML)

Mean PC 2
Pose

Statistical hand model: Romero et al. 2017 (MANO)

(a) MANO (b) DeepHandMesh (ours) (c) 3D reconstruction
. . Input image  Re-projected hand mesh 3D (novel view)
Personalized high-res model:

Moon et al. 2020 (DeepHandMesh) Implicit hand model: Corona et al. 2022 (LISA)

SAARBRUCKEN
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Hands

Different scenarios:

Input Camera view Rotated view

Output
3D Pose

Single hand Two interacting hands Hands and an object



Single Hands: Regression of MANO Parameters

Projected mask Other view

Hand mesh
80x64 320x32 L 2
3 -'?;'._.. Fq
2 Y N = ? R s = =
T3 .0 MprE 8 B ShEsE B ©
e & 8 &8 LGAF ¥ 53 g3 fnbl B g3 B
Er g Zhl T ﬁ_»az»gm-}?“f}w 2552+ 0
S8 o i S\ E 22 =2 ’t‘:.» X BE == FE
41 Rez0 Vo0 R KL
3 €4 B el B YN B el &
80 vertices 320 vertices

=]
£
3
]
£
s

___Output 3D Mesh Input

3D Pose

Hand
Model

Encoder

[ View [ Shape | Pose |
®@

Boukhayma et al. 2019 Boukhayma et al. 2019



Single Hands

Learning framework with
a temporal component

<
‘\Q\\r\‘\ W ?\‘\v.. "‘ ) g :,‘,',' {.‘"’\- N?/) “')
iz »v/‘,o '*:.‘.’:-.:‘,'/.:‘f‘ o -} D,
‘ -4 i ;, < '.l "_‘ = ‘é/’"r’
3 J ) g ‘\' N (l\, % ;\'“;\)

Yang et al. 2020 (SeqHAND)

Backbone

Hand mesh estimation
network robust to occlusions

FPN

Feature map(F') Necess'tv map (M) FIT feature (Fg, ) SET feature (F.) 3D Mesh (‘V)
Input image (1) | .

Primary feature(Fp)

Park et al. 2022 (HandOccNet)




Two Interacting Hands

RGB Input

Dense
Matching

Intra-Hand
Relative Depth

{

“

B
‘ —
Two-Hand MANO Pose
Tracking and Shape
(Sec. 4) Parameters

nter-Hand
Distance
—"7}] *‘Zj‘; R
L =

er-
st

——

2D Keypoints -

Wang et al. 2020 (RGB2Hands)

=
S
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'\‘;‘j:—< 4 S f )
= —d R—

Pose Distribution Our Samples

B
Loy

_
o
(N

Wang et al. 2022 (HandFlow)



Hands and Objects

Input Camera view Rotated view

o
®

o
>

Lmea o Joint reconstruction
Known 3D object model

' Local object shape drives
- hand articulations

Hasson et al. 2019 known Hasson et al. 2020

object model

A LE
g
trans rot trans shape pose
\_:
g
2z
o

.-J.A ST L m\\

Karunratanakul et al. 2020

Ye et al. 2022



Datasets for 3D Hand Pose Estimation

Pose &
Shape
Capture

<3
‘
Net [~
Dataset Deployment

Zimmermann et al. 2019 (FreiHAND) Hasson et al. 2019 (ObMan) Chao et al. 2021 (DexYCB)

Moon et al. 2020 (InterHand2.6M) Wang et al. 2022 (MultiHands) Kwon et al. 2021 (H20)



Future Directions

More geometric and pose-dependent details
Nails, hair and blood vessels

Hands + deformable objects

Relighting of hands under various illuminations

Improved mesh collisions
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Animals

Task-specific motivation: Behavior analysis
Here: Parametric animal models, not just a template

Small area (about ten papers) - Why?

No good datasets: Capturing animals is more difficult than capturing humans
(lack of control, much wider variety)

But: SMAL parametric model uffi et ai. 2017) from quadruped toy animals

Variety of works:
Going beyond SMAL shape space (zuffi et al. 2018, Li et al. 2021)
Video input (Biggs et al. 2018)
Train on synthetic data, test on real data (zuffi et al. 2019)

Building SMAL-style models from 2D inputs

Dogs (Biggs et al. 2020), “breed-aware” (Riiegg et al. 2022)

Birds: Single species (Badger et al. 2020, multiple species (wang et al. 2021)
Retrieve good bird template, then deform (wu et at. 2022)

Wang et al. 2021
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Physics-Based Reconstruction

Physics-based simulation of deformable objects Physically-based rendering

[ £

Render

Geometric approximation of physical behavior



Physics-Based Reconstruction

Physics simulation as soft constraint

Physics-aware Deformations and
Body-Cloth Interactions

Separate Modeling of Clothing
Li et al. 2021

Monocular RGB ®-SfT Reconstruction

Single Input Image Pose and Geometry

Physics Simulation Differentiable Rendering

2 D

Kairanda et al. 2022 (¢-SfT) Physics simulation as hard constraint



Physics-Based Reconstruction

Last decade: Learning-based methods

Emerging trend: Physics + learning
E.g. sparse reconstruction - human motion capture

Shimada et al. 2021 (Neural PhysCap)
Extension to dense?

Bertiche et al. 2022 (Neural Cloth Simulation)
Similar ideas for reconstruction? ?



Physics-Based Reconstruction: Future Directions

Full physics modelling of complex objects
E.g. human skin, muscles, hair and clothing

Need to account for many physical phenomena
E.g. contacts, collisions, elasticity, plasticity or fractures

Integration with neural methods
Fast inference, memory efficient
Physics as loss functions (Raissi et al. 2019)
Differentiable physics simulation as a layer (Liang et al. 2019)
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Event Cameras

Events: Changes in brightness, recorded asynchronously per-pixel

pandord 1 No motion blur
standar

camera O HDR

output:

time

Source: https://youtu.be/LauQ6LWTkxM?t=30



Reconstruction with Event Cameras: State of the Art

Xu et al. 2020 (EventCap) Zou et al. 2021 (EventHPE)



Reconstruction with Event Cameras: State of the Art

DAVIS240C
Event Camera §

Live Demo Hand Pose Prediction Large-Scale Dataset

Rudnev et al. 2021 (EventHands)

Comparison to reconstruction with RGB:
+ Better synthetic-to-real generalization

+ High-speed motion reconstruction using much lower bandwidth
- Single or few events are not sufficient for reconstruction
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Open Challenges

Large Scale

Some NeRF-based
methods handle
nearby static
background

Editability

Deformations make
editing hard,
especially fine details
like wrinkles
Comparatively easy for
meshes

Very difficult with
neural scene
representations

Multiple Objects

Explicit handling of
multiple objects is
in its infancy
(Menapace et al. 2022)

Real-Time Performance

Some category-specific
methods are real time
(Tewari et al. 2018)
Related settings like
RGB-D or static RGB
reconstruction are real
time

Data Bias

Datasets do not reflect
real-world appearance
distribution of people
- Indirect bias in
method design via
evaluation,

direct bias in learning-
based methods
Benchmarks can
quantify bias

(Feng et al. 2022)

Model Variety

Morphable and
parametric models
assume able-bodied
individuals

Also do not account
for individualistic
appearance variation
like tattoos
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Social Implications

* Many upsides as discussed previously, but some potential social downsides

Privacy and Consent Authoritativeness Accessibility

* Need to be .y
considered for » Specialized » Papers, code,
human data . Need to cover a methods (e.g. for datasets, RG.B
» GPUs need energy, » Editability can lead wider range of fac.es) I 9% cameras LY
: . . reliable obtainable
special materials to malevolently variation among
: e * In legal contexts, * GPU resources
and production modified content people (see Open eneral methods somewhat
- Countermeasures Challenges) g : : :
are an active are unreliable for accessible via cloud
occluded regions services

research area
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Conclusion

Largest impact via neural networks:
Deep learning, differentiable and neural rendering
- New fields and problem settings now tractable

Current state:
General methods: Still in early phase but going beyond SfT and NRSfM seems promising
Humans and faces: Maturing, photo-realism in most settings within reach
Hands and animals: Still early, lots of problems remain unaddressed

Lots of possibilities for the future:
Better data via larger, more diverse datasets?
Better geometry and appearance via neural scene representations?
Better deformations via physics?
Better robustness via event cameras?

Continued shift from appearance towards learned features via vision transformers,
e.g. Oquab et al. 2023 (DINOv2)?

Completely new trends like diffusion, e.g. Jakab et al. 2023 (Farm3D)?
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